
Copyright © COSMIC Software 2007

OSMIC
SoftwareC Version 1.5

C-TestIt! User’s Guide
for Freescale HC08/HCS08
All Trademarks are the property of their respective owners

Table of Contents
Introduction
What is C-TestIt! .. 1
C-TestIt! Main features... 2

Chapter 1
Starting C-TestIt!

C-TestIt! Display Description... 6
Specifying the Target Processor and the Execution Engine 7
Setting up the execution environment .. 8

Chapter 2
In Application Unit Testing

Creating a Test .. 10
Specifying Input and Output values.. 13
Run a test .. 15
Adding Assertions... 16
Save a Test .. 18
Create a Testorama ... 19
Run a Testorama ... 22
Save a Testorama .. 22

Chapter 3
Source Unit Testing

Customizing C-TestIt! .. 24
Creating a Source Test .. 25
Specifying Input and Output values.. 28
Run a test .. 30
Adding Assertions... 31
(i)

Introduction
What is C-TestIt!

C-TestIt! is a product that allows users to “unit test” their C code.
“Unit testing” in the case of C is understood as the ability to test a func-
tion with a number of different sets of parameters and then check the
results; this is usually referred to as Black Box Testing. C-TestIt! also
allows users to specify a number of “assertions”; “assertions” are condi-
tional statements that will be checked by C-TestIt! during execution of
the function under test, this is referred to as Gray Box Testing.

C-TestIt! offers a unique approach for unit testing, in that it actually
allows you to test functions in the very body of your own application,
since the tests are done not on the C source but on the actual executable
file that is your application. This is called “In Application Unit Testing”.
This approach guarantees that the function is working in its final envi-
ronment, and it relieves the sometimes tedious steps of having to
recompile and link the tested function with added code that will imple-
ment the test. In the case of C-TestIt!, no code is added to your func-
tion, no compilation or link is necessary, C-TestIt! directly uses your
own application.

C-TestIt! also supports the traditonnal approach of “Source Unit Test-
ing”. In this case the test consists in generating C code that positions the
arguments and more C code that tests the results. This code is then com-
© 2007 COSMIC Software 1

C-TestIt! Main features

2

piled and linked and executed and C-TestIt! then reports the results of
the tests. In this case, a compiler and linker must be readily available to
the user in order to perform all the steps.

By incorporating these two methods for unit testing C-TestIt! offers the
user a comprehensive testing tool.

C-TestIt! Main features
• In Application Unit Testing

• The code under test is the exact code you will later put into
your target,

• works directly on the application code: no need to recompile
or re-link

• Test with the same memory model and compiler options as the
real project The real code is tested so all options and parame-
ters of the code are used

• Test the function at its real location. Since the test is done
using the real application code, functions are thus tested at
their real location thereby relieving the issues of function loca-
tion, bank switching, etc.

• Source Unit Testing.
Source code of the function is analyzed, then C source instru-
mented code is generated to accomplish the test. This code is
then compiled, linked and executed.

• Can check every function of the project
All functions (compiled in debug mode for “In Application Test-
ing”) can be checked with a single file load.

• Gray Box Testing
The user can specify a number of conditional statements that
will be evaluated during function execution.

• Defines input parameters and expected results
All parameters of the function under test can be specified using
C expressions.
© 2007 COSMIC SoftwareIntroduction

C-TestIt! Main features
• Defines values for global variables
Global variables can be defined for every test using C expres-
sions.

• Inputs (arguments, globals)
Can be specified as a single value, or as a range or a set of values
thereby allowing the same function to be tested with different
inputs in the same test session.

• Create a suite of tests (a “Testorama”)
 to be run together

• Supports simulator and real hardware (BDM, ICE, JTAG or
Emulators)

C-TestIt! offers several variants for executing the code under
test.

• Supports a large number of targets

• Runs interactively or in batch mode
Tests can be run immediately and results visualized graphically,
or they can be run in batch mode with logging of output results.

• Can produce reports for archive

• Can produce additional information such as Code Coverage
and execution timing
© 2007 COSMIC Software Introduction 3

CHAPTER

1

Starting C-TestIt!
• C-TestIt! Display Description

• Specifying the Target Processor and the Execution Engine

• Setting up the execution environment
© 2007 COSMIC Software Starting C-TestIt! 5

C-TestIt! Display Description1

6

C-TestIt! Display Description
Once you start C-TestIt! the screen should look like:

The main window is composed of:

• The application pane on the left which shows all the components
of the executable file for which tests will be built/run.

• The test window where tests will be displayed, as well as source
files if necessary.
© 2007 COSMIC SoftwareStarting C-TestIt!

Specifying the Target Processor and the Execution Engine
Specifying the Target Processor and the Execu-
tion Engine

C-TestIt! supports various targets and execution environments.

So once you have started C-TestIt!, you need to specify for which target
processor and which execution environment you are going to specify
the tests.

Please note that the target specification becomes part of the test defini-
tion, while the execution environment is not; i.e. a test for a specific tar-
get can be used with any execution environment available for that
specific target.

The menu shows what is the current target and environment. In the
above example, the Freescale HC12 is selected and the simulation exe-
cution environment is also selected. To change these selections, use the
menu entry.

You will then get the following dialog that will allow you to make your
own selection:

Please note that you select a target family and not a specific derivative.
The derivative selection can be made when running the tests and setting
up the execution environment.

You can then select the target family, the screen will look like:
© 2007 COSMIC Software Starting C-TestIt! 7

Setting up the execution environment1

8

And you can select the execution environment, the screen will look
like:

Setting up the execution environment
For some execution engines it may be necessary to setup the target, for
example it may be necessary to specify which derivative is used, or
which port is used to connect to the execution engine. This is not
always needed but may be necessary for example when the target proc-
essor is changed from one derivative to another.

It is possible to force a setup of the execution environment before run-
ning tests, by checking the Customize->Force Target Setup menu
option.

By default this option is not checked, so it is the user responsibility to
check it if needed.
© 2007 COSMIC SoftwareStarting C-TestIt!

CHAPTER

2

In Application Unit
Testing

As explained earlier C-TestIt! can run using an executable file pro-
duced by Cosmic Tools.Tests can be created, saved, loaded and exe-
cuted later, or they can be grouped in a “Testorama”.

We are now going to see how to:

• Creating a Test

• Specifying Input and Output values

• Run a test

• Adding Assertions

• Save a Test

• Create a Testorama

• Run a Testorama

• Save a Testorama
© 2007 COSMIC Software In Application Unit Testing 9

Creating a Test2

10
Creating a Test
To create a test, the first step is to load the executable file that contains
the function to be tested. To do so you can use either the menu or the
button bar.

Once you have loaded the selected file the application pane will display
information about the application. You will then be able to list the func-
tion names and the variable names included in your application.

Your screen will look like:

Now to create a test for a specific function, just right click on the func-
tion name in the application pane; this will open a test window with all
the components of the test displayed with their default values.

Your screen will look like:
© 2007 COSMIC SoftwareIn Application Unit Testing

Creating a Test
The test window is composed of three columns. The leftmost one lists
all the objects that are manipulated by the test, the middle one shows
input values when appropriate, and the right most one shows output val-
ues when appropriate. When a test is created all appropriate values are
set to their defaults. “Unchanged” is used to indicate an input value
that is not specified, and “Unchecked” is used to indicate an output
value that needs not be checked for this test.

The leftmost window lists all the objects of the test in the following
order:

• Test Name: this is a name that by default is the same as the func-
tion name under test. The user can edit this by right clicking on it.

• The Executable file name used for the test.

• The name of the source file that includes the function under test.

• The name of the function under test.
© 2007 COSMIC Software In Application Unit Testing 11

Creating a Test2

12
• Then we find the Globals entry. This entry exists if and only if the
function under test uses global variables of the program. This
entry can be expanded to view all the variables used as well as
their components for aggregate variables. Each of these variables
can receive an input value for the test by right clicking the corre-
sponding entry in the middle window, and receive an output value
by right clicking the corresponding entry in the rightmost window.

• This is then followed by the list of arguments to the function if
appropriate. Each argument can receive an input value by right
clicking on the corresponding entry in the middle window.

• The function return value. In the case of a function returning an
aggregate, this entry can be expanded to show all components.
The return value can be tested against a specified output value by
right clicking the corresponding entry in the rightmost window.

• Then one finds the “Assertions”. These are conditional expres-
sions that will be tested during the execution of the function. To
add an assertion simply right click on the Assertions icon or text
in the leftmost window. This will bring up a dialog that is used to
specify assertions.

• After, the Target entry is displayed. This entry allows the user to
specify the Stack value used for the test and the address from
which the function call should be executed.

• The Reports entry allows the user to specify whether reports
should be created and where they should be saved. To modify the
report status simply right click on the Reports entry in the leftmost
window.

• Finally, there is the TimeOut entry. This entry allows the user to
specify a time-out for the execution of a function. This is to cope
with situations where the code being tested does not “end” execu-
tion. The TimeOut value is used to stop a test in such cases. To
modify the TimeOut value simply right click on the correponding
middle window entry.
© 2007 COSMIC SoftwareIn Application Unit Testing

Specifying Input and Output values
Specifying Input and Output values
To specify an input or an output value, right click on the appropriate
entry. Typing <RETURN> ends the editing, while typing <ESCAPE>
cancels the editing and restores the initial value. Input and output values
can be specified for globals, arguments and function return values as
either simple values or valid C expressions. Additionally, inputs can be
specified as a range of constant values or as a set of constant values. To
specify a range the following notation is used: [<low_val>,
<high_val>], the test will be run for every value in that range; to
specify a set the following notation is used: {<val1>, <val2>, ...,
<valn>}, the test will be run for every value in the set.

If an output value is specified as a constant or a C expression without
any comparators (i.e. <, > , ...), then it is taken to specify the exact value
of the corresponding object; otherwise it is taken to be a C expression to
be evaluated and the value thus obtained is tested for TRUE or FALSE.

For example, to ensure that the function under test returns a value
greater than zero but less than 5, we could use the following Output
Expression:

func() > 0 && func() < 5

Once the inputs and outputs have been specified the screen will look
like:
© 2007 COSMIC Software In Application Unit Testing 13

Specifying Input and Output values2

14
In this example the argument r.len is specified as a set of values, and
argument v is specified as a range. This produces fifteen different sets
of input values for the test, which is pretty much the same as producing
fifteen different test cases.
© 2007 COSMIC SoftwareIn Application Unit Testing

Run a test
Run a test
Once a test is completely specified, you can launch the test, and the
result will be something like:

You can see the GREEN light icon next to the function output, which
highlights the fact that the return value of the function does match the
output value specified. If that was not the case the icon would be a RED
light. You can also see the Output window which contains a textual
report as to the test execution.
© 2007 COSMIC Software In Application Unit Testing 15

Adding Assertions2

16
Adding Assertions
An assertion is an expression that will be evaluated while the program
is running. An assertion can be attached to a particular source line in the
function under test. This will allow the user to test a condition every
time this line of code is executed. Please note that the assertion is evalu-
ated BEFORE the line of code it is attached to is executed.

Assertions can, for example, allow the user to test that a particular vari-
able meets some specified condition when a line of code is reached.

To add an assertion to a test, simply right click on the Assertions icon in
the leftmost part of the test window.

The following dialog box is then displayed:

The Browse Source button can be used to display the code of the func-
tion under test. You must then specify a line number or a C label and a
valid C expression that will be evaluated when that particular line of
code is reached. The line number/Label can be specified either by typ-
ing it in the or by double-clicking on it in the browse window.

When a test is executed, assertions will be displayed with a GREEN
light icon if their expression is TRUE, and will be displayed with a
RED light icon if their expression is FALSE.

Here is an example of assertion:
© 2007 COSMIC SoftwareIn Application Unit Testing

Adding Assertions
Once you validate the assertion (by clicking OK), the screen will look
like:
© 2007 COSMIC Software In Application Unit Testing 17

Save a Test2

18
If we run a test with assertions here is what the screen may look like:

In this case you can see that the assertion is displayed with a RED light
icon because it did not evaluate to TRUE.

Assertions are the means to create “GRAY BOX Tests”, i.e. tests where
the user can see what happens inside the function under test.

Save a Test
To save a test, select the appropriate menu option under the File menu.
You will have to enter a name for the saved test. Tests are saved in
.CTH files, and can then be later reloaded for execution or editing/
updating.
© 2007 COSMIC SoftwareIn Application Unit Testing

Create a Testorama
Create a Testorama
A testorama is a suite of tests, all using the same executable file. When
a testorama is executed reports for all of the tests can be collated in a
unique report thus allowing the user to gather test information for a set
of related functions.

To create a testorama choose File->New->Testorama. This creates a
testorama window and the screen should look like:

The testorama window shows:

• The testorama name. You can update this by right clicking on it.

• The icon for the executable file that the testorama will use. This
will be updated when you add a test to the testorama.

• The Options icon will allow the user to specify options for the
testorama.
© 2007 COSMIC Software In Application Unit Testing 19

Create a Testorama2

20
• The set of test files for this testorama.

Here is what the screen may look like once you have started to specify
the components of the testorama:

This testorama is based on executable file test.h12, and it will exe-
cute the following tests in sequence:

f:\tester\luca\nothing.cth
f:\tester\luca\makerange.cth
f:\tester\luca\TOTO.cth

The options of a testorama can be viewed/specified by right clicking,
the Options icon. The following dialog is then displayed:
© 2007 COSMIC SoftwareIn Application Unit Testing

Create a Testorama
The options are:

• Stop Testorama on Any Test Failure.

• Show Output window during execution. This will open the Out-
put window to show the test’s execution.

• Log Output in File. This allows the user to log the output pro-
duced in the output window in a file, which can be archived or
examined later.

• Collate Report in File. This allows the user to collate all the
report files produced by the individual tests in a unique file.
© 2007 COSMIC Software In Application Unit Testing 21

Run a Testorama2

22
Run a Testorama
Once a testorama is completely specified, you can launch the test, and
the result will be something like:

A test window is opened for every test specified in the testorama. This
window shows the results of each particular test.

Save a Testorama
To save a testorama, select the appropriate menu option under the File
menu. You will have to enter a name for the testorama. Testoramas are
saved in .CTS files, and can then be later reloaded for execution or edit-
ing/updating.
© 2007 COSMIC SoftwareIn Application Unit Testing

CHAPTER

3

Source Unit Testing
As explained earlier C-TestIt! can run using a C source file.

 We are now going to see how to:

• Customizing C-TestIt!

• Creating a Source Test

• Specifying Input and Output values

• Run a test

• Adding Assertions
© 2007 COSMIC Software Source Unit Testing 23

Customizing C-TestIt!3

24
Customizing C-TestIt!
When using Source Testing, it is possible to customize some parts of
the product.

C-TestIt! uses name mangling to create the variables it needs in the
generated C source code. This mangling is done by prefixing the user
names with predefined strings, namely __argument__ and __result__.
These predefined strings can be changed if the user uses some similar
convention in his own code. To do this use the Customize->Source
Options menu.

C-TestIt! can either generate simple test code, or fully instrumented
test code. The later not only includes the code to achieve the tests but
also includes code that checks the result of the test and uses the printf
channel to output test results. This can be configured via the Custom-
ize->Source Options menu.

Finally it is also possible to configure the options used to compile the
test, thus allowing to build the tests with the same options than those
that will be used for the real code. This is achieved via the Customize-
>Compiler Options menu.
© 2007 COSMIC SoftwareSource Unit Testing

Creating a Source Test
Creating a Source Test
To create a test, the first step is either to load a C source file that con-
tains the function to be tested. To do so you can use either the menu or
the button bar.

Once you have loaded the selected file the application pane will display
information about the application. You will then be able to list the func-
tion names and the variable names included in your application.

Your screen will look like:

Now to create a test for a specific function, just right click on the func-
tion name in the application pane; this will open a test window with all
the components of the test displayed with their default values.

If you have loaded a source file your screen will look like:
© 2007 COSMIC Software Source Unit Testing 25

Creating a Source Test3

26
The test window is composed of three columns. The leftmost one lists
all the objects that are manipulated by the test, the middle one shows
input values when appropriate, and the right most one shows output val-
ues when appropriate. When a test is created all appropriate values are
set to their defaults. “Unchanged” is used to indicate an input value
that is not specified, and “Unchecked” is used to indicate an output
value that needs not be checked for this test.

The leftmost window lists all the objects of the test in the following
order:

• Test Name: this is a name that by default is the same as the func-
tion name under test. The user can edit this by right clicking on it.

• The name of the source file that includes the function under test.

• The name of the function under test.
© 2007 COSMIC SoftwareSource Unit Testing

Creating a Source Test
• Then we find the Globals entry. This entry exists if and only if the
function under test uses global variables of the program. This
entry can be expanded to view all the variables used as well as
their components for aggregate variables. Each of these variables
can receive an input value for the test by right clicking the corre-
sponding entry in the middle window, and receive an output value
by right clicking the corresponding entry in the rightmost window.

• This is then followed by the list of arguments to the function if
appropriate. Each argument can receive an input value by right
clicking on the corresponding entry in the middle window.

• The function return value. In the case of a function returning an
aggregate, this entry can be expanded to show all components.
The return value can be tested against a specified output value by
right clicking the corresponding entry in the rightmost window.

• Then one finds the “Assertions”. These are conditional expres-
sions that will be tested during the execution of the function. To
add an assertion simply right click on the Assertions icon or text
in the leftmost window. This will bring up a dialog that is used to
specify assertions.

• After, the Target entry is displayed. It allows the user to specify
the name of the C source file generated for the test, and the linker
command file.

• These use internal default values if none are specified.

• Specifying a source file name allows you to keep copies
of the tests and archive them if needed; if the source file
is not specified C-TestIt! uses a file called t_code.c.

• Specifying a link command file gives you better control
on the test; if no link command file is specified C-TestIt!
uses a typical default link file.

• Please note that C-TestIt! needs to find a label called _exit
which is used to break execution when the test is ended; so
it is highly recommended that the C run time header file pro-
vided with compiler be used.
© 2007 COSMIC Software Source Unit Testing 27

Specifying Input and Output values3

28
• The Reports entry allows the user to specify whether reports
should be created and where they should be saved. To modify the
report status simply right click on the Reports entry in the leftmost
window.

• Finally, there is the TimeOut entry. This entry allows the user to
specify a time-out for the execution of a function. This is to cope
with situations where the code being tested does not “end” execu-
tion. The TimeOut value is used to stop a test in such cases. To
modify the TimeOut value simply right click on the correponding
middle window entry.

Specifying Input and Output values
To specify an input or an output value, right click on the appropriate
entry. Typing <RETURN> ends the editing, while typing <ESCAPE>
cancels the editing and restores the initial value. Input and output values
can be specified for globals, arguments and function return values as
either simple values or valid C expressions.

If an output value is specified as a constant or a C expression without
any comparators (i.e. <, > , ...), then it is taken to specify the exact
value of the corresponding object; otherwise it is taken to be a C expres-
sion to be evaluated and the value thus obtained is tested for TRUE or
FALSE.

For example, to ensure that the function under test returns a value
greater than zero but less than 5, we could use the following Output
Expression:

func() > 0 && func() < 5

Once the inputs and outputs have been specified the screen will look
like:
© 2007 COSMIC SoftwareSource Unit Testing

Specifying Input and Output values
© 2007 COSMIC Software Source Unit Testing 29

Run a test3

30
Run a test
Once a test is completely specified, you can launch the test, and the
result will be something like:

You can see the GREEN light icon next to the function output, which
highlights the fact that the return value of the function does match the
output value specified. If that was not the case the icon would be a RED
light. You can also see the Output window which contains a textual
report as to the test execution.
© 2007 COSMIC SoftwareSource Unit Testing

Adding Assertions
Adding Assertions
An assertion is an expression that will be evaluated while the program
is running. An assertion can be attached to a particular source line in the
function under test. This will allow the user to test a condition every
time this line of code is executed. Please note that the assertion is evalu-
ated BEFORE the line of code it is attached to is executed.

Assertions can, for example, allow the user to test that a particular vari-
able meets some specified condition when a line of code is reached.

To add an assertion to a test, simply right click on the Assertions icon in
the leftmost part of the test window.

The following dialog is then displayed:

The Browse Source button can be used to display the code of the func-
tion under test. You must then specify a line number or a C label and a
valid C expression that will be evaluated when that particular line of
code is reached. The line number/Label can be specified either by typ-
ing it in the or by double-clicking on it in the browse window. Please
note that at this stage there is no check done as to the validity of the
line or the Label.

When a test is executed, assertions will be displayed with a GREEN
light icon if their expression is TRUE, and will be displayed with a
RED light icon if their expression is FALSE.

Here is an example of assertion:
© 2007 COSMIC Software Source Unit Testing 31

Adding Assertions3

32
Once you validate the assertion (by clicking OK), the screen will look
like:
© 2007 COSMIC SoftwareSource Unit Testing

Adding Assertions
If we run a test with assertions here is what the screen may look like:

In this case you can see that the assertion is displayed with a RED light
icon because it did not evaluate to TRUE.

Assertions are the means to create “GRAY BOX Tests”, i.e. tests where
the user can see what happens inside the function under test.
© 2007 COSMIC Software Source Unit Testing 33

Index
A
assertion 16, 31

conditional expression 12, 27
green light icon 16, 31
red light icon 16, 31

Assertions 27
icon 16, 31

assertions 12

F
file

collate 21
function

arguments list 12, 27
name 11, 26
return value 12, 27
test 1
test at its real location 2

G
Globals

entry 12, 27
Gray Box Testing 1
GRAY BOX Tests 18, 33

I
icon

green light 15, 30
red light 15, 30

In Application Unit Testing 1

N
name

mangling 24

O
Output Expression 13, 28
Output window 15, 30

P
predefined string

__argument__ 24
__result__ 24

R
Reports

entry, source test 28
Reports entry 12

S
source test

create 25
Source Testing 24
Source Unit Testing 1

T
Target

entry 12, 27
Stack value specification 12

target
derivative 7
family 7
Index 1

test
create 10
executable file name 11
execution environment 7
input values 11, 26
launch 15, 22
launch, source test 30
log file 21
manipulated objects 11, 26
name 11, 26
name of the source file 11, 26
output values 11, 26
output window 21
parameters 1
results 1
same memory model 2
save 18
target selection 7
window 11, 26

test window 22
Testorama 3

stop 21
testorama 19

.CTH files 18

.CTS files 22
create 19
icon 19
name 19
options 20
Options icon 19
save 22
set of test files 20
specified 22
window 19

TimeOut
entry 12
entry, source test 28
value 12
value, source test 28

U
unit test 1

V
value

input, Unchanged 11, 26
output, Unchecked 11, 26
range 14
set of 14
specify input 13, 28
specify output 13, 28

variants
similator and hardware 3
2 Index

	Introduction
	What is C-TestIt!
	C-TestIt! Main features

	Starting C-TestIt!
	C-TestIt! Display Description
	Specifying the Target Processor and the Execution Engine
	Setting up the execution environment

	In Application Unit Testing
	Creating a Test
	Specifying Input and Output values
	Run a test
	Adding Assertions
	Save a Test
	Create a Testorama
	Run a Testorama
	Save a Testorama

	Source Unit Testing
	Customizing C-TestIt!
	Creating a Source Test
	Specifying Input and Output values
	Run a test
	Adding Assertions

