osmic 5%

Software

LAP

C Source Level Cross Debugger
User’s Guide

Monitor Configuration

PC/Windows Host

Document Version 3.2 December 1999

Copyright © COSMIC Software Inc 1994, 1996, 1998, 1999
All Trademarks are the property of their respective owners

TOC

Table of Contents

Overview
ZAP Display Windows 1-2
ZAP Debugging Features 1-4
Non-intrusive Debugging 1-4
Source Browsing 1-4
Graphical Performance Analysis 1-4
C and Assembly Trace 1-5
Time Line Chronograms 1-5
Chromacoding 1-5
Breakpoints 1-5
Expression Evaluation 1-5
Single Stepping C and Assembly 1-6

Page TOC-1

Automated Debugging Sessions 1-6

On-line Help Facility 1-6
Comprehensive Debugger Command Set 1-6
ZAP Configurations 1-7
Simulator Configuration 1-7
Monitor Configuration 1-7
Background Debug Mode Configuration 1-7
In-Circuit Emulator Configuration 1-8
Using ZAP
Starting ZAP 2-2
ZAP Windows 2-3
Source Window 2-3
Toolbar 2-3
Command Window 2-4
Disassembly Window 2-4
Memory Window 2-4
Monitors Window 2-4
Register Window 2-5
Stack Window 2-5
Status Bar 2-5
Variable Window 2-5
Screen Display Options 2-6
Windows Menu 2-6
Setup Menu 2-7
Loading an Application 2-13
File Menu 2-13
Load 2-13
Application Map 2-14
Load and Save Layout 2-14

Page TOC-2

Load and Save Session
About ZAP
Exit
Utilities Menu
Configure Tools

On-line Help Facility
Help on Using ZAP
Help on C Library
Help on C Syntax

Program Execution

Start and Stop Execution
Normal Execution
Stop execution

Single Stepping

Reset and Restart
Reset
Go from Reset
Restart

Events and Breakpoints
Code Events
Watchpoint
Breakpoints
Setting/Editing Breakpoints
Deactivating/Activating Breakpoints
Deleting Breakpoints
Code Event Editor
Displaying and Editing Breakpoints

2-14
2-14
2-14

2-15
2-15

2-17
2-17
2-17
2-17

3-10
3-11
3-12
3-15

Page TOC-3

Activate and Deactivate Functions 3-16

Browser Menu 3-17
Event Browser 3-17
Source Browser 3-17
Memory Browser 321
Variable Browser 3-22
Cross Reference Browser 3-23
Symbol List Browser (sorted) 3-24
Symbol Browser 3-25
Map 3-25

Monitoring Application Data

Monitoring Variables and Expressions 4-2
Monitors Window 4-2
Address of Source Lines 4-3

Updating Variables 4-4

Evaluating Expressions 4-6
Evaluate Expression 4-6

Displaying and Updating Memory 4-7
Disassembling Memory 4-7
Displaying Memory 4-7
Updating Memory 4-8
Fill Memory 4-9
Saving aMemory Dump to afile 4-10
Saving Memory Dump as S-Record format. 4-10
Display Highlights 4-10

Evaluating Assembly Symbols 4-11

Displaying and Updating Registers 4-12

Page TOC-4

Displaying the Stack Frame 4-13
Advanced Topics

Simulated I/0 5-2
ZAP Commands
Command Line Syntax 6-2
Specifying Memory Locations and Registers 6-3
Constants and Expressions 6-3
Register Manipulation 6-3
User defined variables 6-4
Source files and Functions. 6-4
Data Objects 6-5
Pointer Indirection 6-6
Entering ZAP Commands 6-7
Command Descriptions 6-8
ZAP Commands 6-9

| ndex

Page TOC-5

Page TOC-6

CHAPTER

1

Overview

The COSMIC ZAP source level cross debugger isafull featured MS-
Windows cross debugging environment. It is designed to provide a
powerful yet intuitive Windows interface for efficient cross
debugging of embedded applications. 4.0xThis chapter provides an
overview of ZAP's main features and a description of the various
target configurations available. The following sections are included:

¢ ZAP Display Windows
¢ ZAP Debugging Features
¢ ZAP Target Configurations

Page 1-1
© Copyright 1999 by COSMIC Software

Overview

ZAP Display Windows

ZAPis atrue MS-Windows application providing an infinite combi-
nation of display options. You can open and arrange any combination
of the following windows. You can even change each window’s font
and highlight colors.

Source Window
The Source window displays the C or Assembly source code
for the active function and maintains the active instruction
highlight for the current line of source code.

Disassembly Window
The optional Disassembly window displays a disassembly of
the current page of code. The disassembly display is coordi-
nated with the C or Assembly source window to provide simul-
taneous debugging of C and assembly. With ZAP, you can
even set breakpoints in the Disassembly window.

Command Window
The optional Command window gives you the option to use
ZAP'srobust command language.

MonitorsWindow

The Monitors window is an optional relocatable window that
displays monitored (or watch) expressions and variables. This
window allows you to point and click on monitored objects to
change their format or update their value.

Register Window
The Register window displays the current values of the CPU
registers and displays changes between commands in color.

Stack Window
The Stack window displays the current stack frameincluding
function arguments.

Data Windows
You can open multiple Data windows to display a memory

Page 1-2
© Copyright 1999 by COSMIC Software

Overview

dump or disassembly anywhere in your memory map.

Variable Window
The Variable window displays the address and value of all
variables in the current scope in one of several display formats.

Toolbar
The Toolbar is arelocatable push button window providing

easy access to some of the most commonly used debugging
commands.

Page 1-3
© Copyright 1999 by COSMIC Software

Overview

ZAP Debugging Features

ZAP provides many features tailored specifically for the embedded
systems developer. The user interface is amost entirely processor
and execution configuration independent. If you are debugging code
on several processors or different target configurations your
debugging skills are entirely portable. The following sections briefly
describe the high level user interface common to all target configura-
tions of ZAP,

Non-intrusive Debugging

ZAP does not modify your code in any way. The symbol information
ZAP usesis produced in separate, transparent sections, which resides
on the host. The code you cross debug is that which you intend to
execute in your fina product, not an intermediate language.Y ou can
PROM vyour code or download it to the target environment directly
after debugging with ZAP (No recompiling or relinking is required).

Sour ce Browsing

Zap's unique source browser allows you to search and view all of
your source code in multiple discrete windows. Y ou can set and edit
breakpoints anywhere in your code without changing the source
window or the current state of execution. ZAP s powerful browser
feature also lets you quickly search and monitor variables and break-
points.

Graphical Performance Analysis

ZAP's performance analysis feature gives you a graphical represen-
tation of code coverage and MCU cycles. Code coverage can be
displayed on afile by file, function by function basis. Thisfeature
gives you arelative comparison of your codes efficiency, thus
allowing you to go back and optimize the code to get the most out of
your embedded project. (Available only in simulation version)

Page 1-4
© Copyright 1999 by COSMIC Software

Overview

C and Assembly Trace

The C and Assembly Trace feature allows you to record and playback
any seguence of C or Assembly instructions. You can move
backwards and forwards through the recorded trace one instruction at
atime or in a continuous playback mode. To help you save time, you
can even exclude functions you want to trace over. (Not availablein
all configurations see the Chapter titled “ Advanced Topics’ for
details)

Time Line Chronograms

The Chronology feature provides a chronogram or graphical time-line
of function calls. A proportional bar chart is used to denote entry and
exit from afunction with relation to the total number of cycles
executed. You can display the chronology of function calls. ZAP can
even report chronology on interrupt service routines so you can keep
track of external events aswell asinternal function calls. (Not
availablein al configurations see the Chapter titled “ Advanced
Topics” for details)

Chromacoding

ZAP provides syntax color coding of C key words, C library
functions to make it easier to follow the flow of your program.

Breakpoints

ZAP s powerful breakpoint facility lets you set an unlimited number
of breakpoints in any source window with a simple double click of
the mouse. You can attach debugger actions, user commands, and
complex expressions to any breakpoint. You can even set complex
breakpoints.

Expression Evaluation

ZAP allowsyou to evaluate and monitor variables and expressions by
double clicking on them or selecting them with the mouse.

Page 1-5
© Copyright 1999 by COSMIC Software

Overview

Single Stepping C and Assembly
ZAP’s stepping facility lets you to step through your program at the C

and assembly level, step into and over function calls and perform
conditional stepping.

Automated Debugging Sessions

You can use ZAP's file redirection and log file management facilities
to automate debugging sessions. You can record and play back al or
part of a debugging session.

On-line Help Facility
ZAP provides an extensive Windows on-line help facility. Double
click onaC keyword, library function in the source window to open a

syntax help window. Choose On C Library from the help menu to
display alist of ANSI C functions and hypertext manua pages.

Comprehensive Debugger Command Set

In addition to the many mouse and menu features, ZAP provides an
extensive command language for those who prefer command entry to
mouse operations. ZAP’s comprehensive set of commands allows
you to cross debug your code at both the C source and Assembly
language levels.

Page 1-6
© Copyright 1999 by COSMIC Software

Overview

ZAP Configurations

ZAPisavailablein four target configurations to provide debugging
support for all phases of development. All of the ZAP debuggers
share the same high level Windows interface and command set so
thereis no additional learning curve as you progress through your
development or change to another supported environment. The
available configurations include:

Simulator Configuration

This version of ZAP integrates a CPU simulator with afull C and
Assembly source level debugger to provide a debugging environment
which doesn't require any external hardware. This version isuseful
during the early stages of development when you' re trying to debug
your algorithms or when hardware is simply not available.

Monitor Configuration

This version of ZAP is designed to work with several standard
prototype or evaluation boards. ZAP uses a small monitor program
which is downloaded to the board to create its debugging
environment. This provides alow cost hardware debugging solution.

Background Debug M ode Configuration

In recent years, some chips have been equipped with Background
Mode debugging support. The Background Debug Mode (BDM) is
essentially an operating mode and instruction set which allows access
to the chips internal operations and target resources without the need
for amonitor. Thisversion of ZAP isinterfaced through the parallel
port of a PC or workstation to the standard BDM port using the
standard Motorola (P& E) cable. You can debug directly on your
target board or use a standard evaluation board. Thisconfiguration
provides areal-time debugging solution with a minimum of setup
time and hardware expense.

Page 1-7
© Copyright 1999 by COSMIC Software

Overview

In-Circuit Emulator Configuration

ZAP has aso been interfaced with several full featured in-circuit
emulators to provide the optimal debugging environment. This
version of ZAP is often used in the latter stages of development to
fine tune optimizations and track down the hard to find bugsin
complex embedded applications.

Page 1-8
© Copyright 1999 by COSMIC Software

CHAPTER

2

Using ZAP

This chapter describes the basic invocation and operation of the
COSMIC ZAP debugger. This chapter assumes that you have read
the Installation Guide and have properly installed the debugger and
setup the execution environment. This chapter includes the following
sections:

¢ Starting ZAP

+ ZAP Window Displays

+ Screen Display Options

¢ Loading an Application (File Menu)
+ UtilitiesMenu

+ On-line Help facility

Page 2-1
© Copyright 1999 by COSMIC Software

Using ZAP

Starting ZAP

The easiest way to start ZAP isto locate the ZAP icon and double
click onit. Alternatively, you can select ZAP from the start menu
under Windows 95/NT. Thiswill bring up the main debugger screen
as shown below. This screen consists of the ZAP desktop, menu bar
button bar and status bar.

T
Menu and Button Bar i

B et B
:
rel vmis indo il
ey |
i
1 wha ¢

=1 Source Window

1S TREOT 1AL

i3 imr < Aly bewi

= iy b
Ll 111 = 85

u mad

Status Bar

Figure 2-1 ZAP Main Window

Page 2-2
© Copyright 1999 by COSMIC Software

Using ZAP

ZAP Windows

In addition to the main debugger screen, ZAP uses several optional
windows to efficiently display and control the debugging process.
Each window can be opened, closed, moved and resized using
standard Windows 95/NT mouse commands. The optiona windows
are available under the Show menu. Simply select the desired
window to open it and select it again to closeiit.

Source Window

The Source window is the leftmost window in the main display and
accepts point and click breakpoints and expression evaluation. The
Source window displaysthe C or Assembly Source code for the
activefileand function and maintains the activeinstruction highlight
for the current line of source code. Source code is shown with bold
line numbers when assembly code is actually produced for the source
line and gray line numbers for source lines that didn’t produce any
code (i.e. #defines, #iifdefs etc.). The Source window also provides
color coded syntax and on-line help for C keywords and C library
functions. Simply double click on any C keyword, library function
to pop-up asyntax help window. You can enabl e/disable syntax color
coding by selecting Syntax Coloring from the Show menu.

Button Bar

The Button Bar consists of graphical push buttons which duplicates
many of ZAP’'s most heavily used commands. The button Bar can be
turned on and off by selecting Button Bar from the view memory.

Toolbar

The Toolbar provides afast convenient way to access the more
frequently used debug commands. The Toolbar option under the
Show menu controls the orientation of the toolbar dialog box.
Choose Toolbar->Horizontal or Vertical to open the toolbar with the
desired orientation. TheToolbar is completely rel ocatable so you can
place it anywhere on the screen.

Page 2-3
© Copyright 1999 by COSMIC Software

Using ZAP

Command Window

The Command window is an optional relocatable window used to
enter and display debugger commands and output. See the Chapter
titled “ZAP Commands” for details.

Disassembly Window

The optional Disassembly window displays a disassembly of the
current (or active) page of code. Thisdisplay also maintains a
highlight on the current assembly instruction and a secondary
highlight on the assembly instructions that correspond to the active
line of C code or assembly macro. This Disassembly window also
accepts point and click breakpoints on instruction addresses.

Memory Window

The memory window is an optional relocatable window that displays
ablock of memory in one of severa formats including disassembly
(code), hexadecimal, octal, binary and decimal. Y ou can have the
ASCII representation of the memory block displayed alongside the
memory dump to help you find and monitor strings at the low level.
Memory changes between commands are highlighted so you can
easily track memory modifications as your program executes. You
can modify memory by clicking on the desired datavalue and typing
anew value. You can also choose to disassemble memory by
selecting Code in the Memory Configuration window. You can set
breakpoints in the disassembly by double clicking on the assembly
address.

M onitors Window

The Monitorswindow isan optional relocatable window that displays
monitored (or watch) expressions and variables. Thiswindow allows
you to point and click on monitored objectsto change their format or
update their value.

Page 2-4
© Copyright 1999 by COSMIC Software

Using ZAP

Register Window

The Register window is an optional relocatable window that displays
the current values of the CPU registers and displays changes between
commands in color. Thisdisplay allows you to click on any register

name to change its value to an application symbol or double click on

it's value directly to change it explicitly from the keyboard.

Stack Window

The Stack window is an optional rel ocatable window that displaysthe
current stack frame including function arguments. You can double
click on afunction namein the stack frame to open up a source
browser window.

Status Bar

The optional status window is asmall grey bar located below the
source window Thiswindow displays the current status of the
system. (i.e. running, stepping etc.)

Variable Window

The Variable window is an optional relocatable window that displays
the address and value of all variablesin the current scopein one of
several display formats.

Page 2-5
© Copyright 1999 by COSMIC Software

Using ZAP

Screen Display Options

ZAP alowsyou to customize the screen layout, text fonts and colored
highlights of the various screen displays. All of these attributes can be
changed using the Setup and Windows Menu. To save changes to
window layout fonts and color highlights choose Save Config On Exit
from the Setup menu.

Windows M enu

ZAP uses the standard Window 95/NT display options Free, Cascade,
Horizontal Tile and vertica Tile. These options are found under the
Windows menu. The WIndows menu also maintains a history list of
all open windows including those minimized. Choose an open
window from the history list under the Windows menu to bring it to
the foreground and make it active.

Free Allows you to place and size all windows by hand
with new windows opening with the default size
and on top of other windows.

Cascade Displays all windows cascaded from top left to
bottom right with new windows cascaded on top
as the last window.

Horizontal Tile - Displaysall windowsinawider horizontal size.
Each window is proportionally sized to fill the
entire main the window without overlapping.
New windows are added from the top left corner
and push the other windows down and then up to
the next column to keep the display proportional.

Vertical Tile- Displaysall windowsin ataller vertical size.
Each window is proportionally sized to fill the
entire main window without overlapping. New
windows are added from the top left corner and
push the other windows to the right and then
down to the next row to keep the display propor-
tional.

Page 2-6
© Copyright 1999 by COSMIC Software

Using ZAP

Setup Menu

L oad Option (Code and Symbols)

This option allows you to choose whether to |oad the code
portion of the image. In some case, typically when a hardware
version is used, you may load the code portion via another
method such as a serial programmer. In this case, you can
choose to load only the symbols through ZAP and debug the
matching code which is already available in the target system.
The default is to load both the code and symbols.

NOTE

In al cases symbols are not |oaded to the target system. All
symbols are loaded and kept on the host. If you plan to load
only the symbolsit is required that the code imageand the
symbol image are created from the same executable (i.e. linker
output). If they do not match the behavior is undefined.

Colors

Each color option item listed under the options menu opens a
Windows color pallet for selecting the desired color. Simply
click on the desired color and click OK to change the color.

Events

Changes the highlight color for active and suspended
events. This highlight appears on the C line number in
the source window when a breakpoint is active or
suspended. The highlight also appearsin source and
event browser windows.

Disassembly

Changes the color of the disassembly highlight in the
disassembly window. This highlights the assembly
instructionsthat correspond to the current line of C code.

Instruction
Changes the color of the highlight for the current

Page 2-7
© Copyright 1999 by COSMIC Software

Using ZAP

assembly instruction or program counter in the disas-
sembly window.

Memory
Changes the color of modified datain the Memory
window.

Source
Changes the color of the highlight for the current line of
C code in the source window.

Search
Changes the color of the highlight for linesfound in a
search. thecurrent line of C code in the source window.

Syntax Coloring

ZAP provides syntax color coding of C key words, C
library functions and kernel objects to make it easier to
follow the flow of your program. If you prefer you can
change the color used for a particular object or disable
color coding atogether. To enable/disable all syntax
coloring choose syntax coloring from the view menu.
To change a particular syntax color choose the syntax
type that you want to change from the Syntax coloring
submenu.

C Comments
C Key words
Library Functions

Mnemonics - (Assembler mnemonics)

Fonts

The font option allows you to change all of the fonts to your
own taste or selectively change the fonts for the different
windows. Each selection will open up a Windows font dialog
box which allows you to choose any available font.

Page 2-8

All Changes the default font for all the windows.

© Copyright 1999 by COSMIC Software

Using ZAP

Browser Changes fonts for all the browser windows.
Commands Changes Command window fonts.

Memory Changes the fonts for the data or memory
dump window.

Disassembly Changes the font for the disassembly
window.

Monitors Changesthe font for the Monitor window.
Registers Changes the Command window fonts.

Source Changes the font for the C source code
window.

Stack Changes the font for the Stack display
window.

Key Binding (Keyboard Short-cuts)

ZAP s key binding facility allows you to attach or bind short-
cut keys ZAP commands and tasks. Simply select click on the
function key by itself or in combination with the <Shift> and
<Control> keys and then choose a ZAP function from the
binding pull down list and then click OK or on another function
key to save. Key bindings are saved in the ZAP initialization
file (.ini) when the configuration is saved. This mechanismis
in addition to the standard Windows shortcuts denoted by the
underscored letter in each command.

Page 2-9
© Copyright 1999 by COSMIC Software

Using ZAP

Eay Dinding

Firp Saancion |

G e N N s G (R G
=T | Chi |

Anding

T T T

=

Figure 2-2 Key Binding Setup Box

Path Editor

The path option is used to define the search path to the source
files. By default, ZAP searches the directory where the
debugger isinstalled. Using the PATH editor you can browse
through the directory structure to add the appropriate search
paths. Simply double click on the desired path and click on
Append, Add before or Add after to place the current path in
the desired place in the search path. ZAP searches from top to
bottom in the Path Editor to find source files.

Page 2-10
© Copyright 1999 by COSMIC Software

Using ZAP

“

|

teent] partoon | ot)
|u h2ap

chaullb = ¥)

Ingiile oul . Qi ey dzap

Pk bal -

plhip bl I.;Ii'l. ¥

pkrenl beai :.5::_:":.] -“
plsed hal S

e :m £ hedlE -.ﬂ-
S uleg st

Aimul sip kel

mwlc Diri : -m
= - | [oo

Figure 2-3 Path Editor

Default Int Format

This option specifies the default display format for the variable
browser window. Choose binary, decimal, octal or
hexadecimal.

Save Config

This option saves ZAP's configuration immediately. The
configuration save includes the location and size of the
following windows if they’ re open when performing the save.
The Main ZAP window, Disassembly, Monitors, Regsters,
Stack, Status and Toolbar. ZAP also savesthe fonts, highlights
and colors.

Save Configuration on Exit

This menu item is used to turn the Save Config on Exit option
on and off. When the menu itemis on (checked) ZAP will
save the location and size of the following windows if they’re

Page 2-11
© Copyright 1999 by COSMIC Software

Using ZAP

openwhen exiting ZAP. The Main ZAP window, Disassembly,
Monitors, Regsters, Stack, Status and Tool bar

Page 2-12
© Copyright 1999 by COSMIC Software

Using ZAP

L oading an Application
FileMenu

L oad

The Load option opens up the load dialog window as shown below.
You can browse and select theload file by choosing afolder from the
“Look In” pull down menu. The debugger accepts an absolute object
file from the appropriate COSMIC compiler (i.e. output file from the
linker). Thisfile should be built with the +debug compiler option to
include C source level debug information. For Assembly source level
debugging, use the -x assembler option. Once the file has finished
loading, the program counter is set to the address of the symbol
__stext or the beginning of the first segment in thelink fileif the
symbol __stext is not defined. Thisistypically the address of the
beginning of the assembly level startup routine (crts.s or crtsi.s),
which is used as the default reset vector.

Load HE |

Loak i I £ bus_state_analyzer_test

File namne: Ibsa_DB_azBZhEIE! Open I
Files of type: [HOB Files(* h08] =] Cancel |

Figure 2-4 Load Menu

Page 2-13
© Copyright 1999 by COSMIC Software

Using ZAP

Application Map

Choose application map to display the application segments along
with their corresponding starting and ending addresses and segment
Sizes.

L oad and Save L ayout

ZAP Allows you to save and restore the screen layout at any time.
The save layout command saves the size and location of the following
windows: Source, Disassembly, Registers, Stack, Command,
Monitor and the main ZAP desktop window.

L oad and Save Session

The save session command is a superset of the save layout command.
In addition to the layout, the save session command saves the last file
loaded, the contents of the monitor window and any data windows
and their addresses. Theload session command opensall of the
windowsin the layout and then |oads the saved application. Once the
application isloaded ZAP will then fill the monitor window with the
saved variables and open any saved datawindows to their proper
addresses. A session file can be loaded from a command line or
shortcut using the -s option. e.g. zap.exe -sfilename.ssn

About ZAP

The File menu item About ZAP provides adialog box containing the
configuration, version number and copyright for ZAP.

Exit
The exit menu command closes ZAP and all windows associated with
the current invocation and optionally saves the configuration.

Page 2-14
© Copyright 1999 by COSMIC Software

Using ZAP

Utilities M enu

ZAP alowsyou to integrate and operate your favorite editor and
make facility with the compiler and debugger. Y ou can access several
tools aswell aDOS shell from a convenient button bar or pull down
menu. To configure the button bar Choose Configure from the
Utilities Menu to open theTool Editor.

Configure Tools

The Tool Editor allows you to call any DOS or Windows editor by
entering the appropriate editor commands in the Edit field. To call or
switch to an editor with the current source file use the % character to
denote the current sourcefile.

Call Editor

To configure an editor simply enter the appropriate command
to start the editor in the Editor field of theTool Editor. To open
or switch to the editor from ZAP select Call Editor from the
Utilities Menu to invoke the desired editor.

Edit Current File

To setup an editor to automatically open the source file
currently activein ZAP add the editor command followed by
the % character to denote the current file. Click on the appro-
priate button or select Edit Current Fileto open the editor with
the current source file.

Compile

Setup the compiler command line in the Compile field of the
Tool Editor including all desired compile time options
followed by a% character. To compile the active sourcefile
click on the Compile button or choose Compile from the
Utilities Menu.

Compile Debug

Same setup as Compile with the addition of the debug option to

Page 2-15
© Copyright 1999 by COSMIC Software

Using ZAP

provide source level debug information. To compile choose
Compile Debug from the Utilities Menu or click on the
Compile Debug button.

Build

The Build command can be used to execute a makefile or link
the current application. To configure the build command enter
the desired command in the Build field. To execute the build
command select Build from the Utilities menu or click on the
Build button.

DOS Shell

To open aDOS Shell. Click on the DOS icon or select DOS
Shell from the Utilities Menu.

(] [\eright e
ET‘E""“ [dvommghiicn x

Corgibe [cotils vis %

E_ [cebtns e eduinag x

LT
Buildl |cink -0 outfils kiR inkiils, ink:
Lax X ax the Cumient File H e
0 [o |
Page 2-16

© Copyright 1999 by COSMIC Software

Using ZAP

On-line Help Facility

ZAP provides an extensive help facility. ZAP provides help on C
language syntax and C library syntax as well as how to use ZAP.

Help on Using ZAP

Choose On ZAP from the help menu to display alist of help topicsfor
ZAP. Double click on any subtopic to view manual pages on the
topic.

Help on C Library

Choose On C Library from the Help menu to display alist of C
libraries. Double click on any function name to display a manua
page describing the syntax of the function.

Help on C Syntax

Double click on any C keyword or library function to open up a
syntax description window.

Page 2-17
© Copyright 1999 by COSMIC Software

Using ZAP

Page 2-18
© Copyright 1999 by COSMIC Software

CHAPTER

3

Program Execution

This chapter covers the many different ways to control program
execution, including:

*
*

*

Page 3-1

Start and Stop Execution

Single Stepping

Reset and Restart

Events and Breakpoints

Activate and Deactivate Functions

Browser Menu

© Copyright 1999 by COSMIC Software

Program Execution

Start and Stop Execution

Once an application is loaded into ZAP you have several options for
executing your code. These options are found under the debug menu
and on the Tool bar.

Nor mal Execution

Normal execution is the continuous real-time execution of the appli-
cation (except with simulation of course). ZAP updates any active
windows whenever execution halts.

Mouse and Menu

To start or resume execution type g when the Source window is
active or choose Go from the Debug Menu, Button bar or
Toolbar. Thiswill start execution from the current PC and
continue until an active breakpoint isreached or you select
Sop from the Main menu.

Go T Till SourceLine Short-cut

If you want to execute the program until a particular sourceline
simply hold down the control key and double click on the
source line number. This can be done from any source window
including C or assembly source browser windows.

Go Editor

The Go Editor allows you to execute your code until it reaches
agpecificfile, function, line number, address. Choose Go Till
under the debug menu to open the Go Editor.

» Double click on afunction name or source file to execute
until the specified function or sourcefileis entered.

» Enter asource line number in the Line Box to execute until
thelineis reached.

» Enter an address in the address box to execute until the
address is reached.

Page 3-2
© Copyright 1999 by COSMIC Software

Program Execution

— I L
F oo Fills
m | 0k,
ik ¥ o + | |
rlksiait 1 colnck &
demryzamn = cladre
dem| cmbom o
it cunlig i Canced
e ai L | |
m)R
ML
pulcher UM P L
B ChErib_i
e st [
o e - darma. - | Hulg |
sxwiart + gmichoe c +
Loak fiiey Tk ﬂ Linm Addimen |

Figure 3-1 Go Editor

Command Window

Type g in the command window to start or resume execution.
The g command accepts one of two possible arguments. Y ou
can enter either anumber of C linesto be executed or the C line
number to execute to. Seethe g command in the “ ZAP
Commands’ chapter for details.

Stop execution
Mouse and Menu
You can stop execution at any time by clicking on Stop or
typing escape in the Main menu. When the program stops all
active or dynamic windows are updated and refreshed.

Page 3-3
© Copyright 1999 by COSMIC Software

Program Execution

Single Stepping

Single stepping allows you to execute one Disassembly instruction or
source line at atime and monitor changes to the system. All active
and dynamic windows are updated after each single step. ZAP offers
several different types of single stepping for greater flexibility. You
can step at the source level or disassembly level, step into or over
function callsand perform conditional stepping. ZAP coordinatesthe
source display with the disassembly display using color coded
highlight bars. The current source line and disassembly instruction
(PC) is highlighted in the source and disassembly window respec-
tively. ZAP aso provides an additiona highlight bar which covers
the assembly instructions that make up the current line of source
code. These highlights are continuously updated with all of the single
step methods described below.

Mouse and Menu

» To step one source line and step into active functions
Choose Step from the Debug menu or Toolbar or type s
when the ZAP Source window is active.

» To Step one source line and step over function calls;
Choose Step Over from the Debug Menu or Step O from
the Toolbar.

* To Step one disassembly instruction and step into
functions; Choose Step Instr from the debug menu or Stepl
from the Toolbar. You can aso type s while the Disas-
sembly source window is active to step at the assembler
level.

Step Editor

The step editor allows you to perform multiple single steps and
conditional single stepping. Choose step until under the debug
menu to open the step editor.

» Click inthe Assembler Box to enable and disable assembly

Page 3-4
© Copyright 1999 by COSMIC Software

Program Execution

level stepping. The default is source level stepping.

» Double click on afunction name or source fileto single
step until it enters the specified function or sourcefile.

» Enter anumber in the count box to perform multiple single
steps from the current program counter.

» Enter aC line number in the Line box to step until the line
is reached.

— I 1
Function Fiw
an IS = e | s |
clrian Il ik I
S e 1o T 1 ke &
Bl (e
[e T CENAN
mam s N
prinil CREE I
faisai R
L]= 1 cinakc
aridry ol i i
scisedry = Fiy m
scimiari + guirhar.c 4 -
Tosk ¥ Tk £ use | |
[0 Assowsler

Figure 3-2 Step Editor
Command Window

The step command single steps one line of source code. The
step command accepts two optional arguments. The following
examples demonstrate some common uses of the step
command.

See the step command in the “ ZAP Commands’ chapter for
more details.

» Tostep onesourcelineand step into active functionstype s

Page 3-5
© Copyright 1999 by COSMIC Software

Program Execution

or step in the command window.

» To step multiple source lines types# where# is the
number of source lines to be executed.

» Type soor ostep to step one source line and step over
function calls.

» Type d oristep to Step one disassembly instruction and
step into functions.

e Typeso put() to step over function calls until the function
put() is encountered.

Page 3-6
© Copyright 1999 by COSMIC Software

Program Execution

Reset and Restart

Reset

Choose Reset from the debug menu to reset the processor or
processor simulation.

Go from Reset

Choose“ Go from Reset” from the Debug M enu to reset the processor
or processor simulation and then issue a Go command to start
execution. This option does not affect any events.

Restart

The Debug menu item Restart sets the PC to it's original value after
loading the current application. This command does not affect any
other registers or events.

Page 3-7
© Copyright 1999 by COSMIC Software

Program Execution

Events and Breakpoints

Events and breakpoints are used to control program execution based
on the state of the system. Code Events include breakpoints and
watchpoaints.

Code Events

Code events include breakpoints and watchpoints. A breakpoint is
used to stop execution so that the system can be analyzed. A watch-
point is used to temporarily stop execution, perform an action and
then continue execution.

Watchpoint

A watchpoint is used to temporarily stop execution, perform an action
and then continue execution. A watchpoint is the same as a break-
point except that execution resumes after the action isfinished. To set
awatchpoint choose “watchpoint” in the “Code Event Editor” or use
the “Watch” command. See the chapter titled “ZAP Commands” for
details. The specification and options for watchpoints are identical to
that of breakpoints. Breakpoints can be converted back and forth to
watchpoints by selecting the watchpoint or breakpoint box in the
code event editor.

Breakpoints

A breakpoint is an event that causes execution of your program to be
interrupted so you can examine the state of the system. Y ou can set an
unlimited number of active breakpoints on any C source line,

address or data object. You can also associate debugger commands,
user commands and complex expressions to any breakpoint. There
are severa methods for manipulating breakpoints, choose any of the
following methods.

Page 3-8
© Copyright 1999 by COSMIC Software

Program Execution

Setting/Editing Breakpoints

Mouse and Menu

Double click on any valid line number in the Source
window to set an unconditional breakpoint on aline of
source code. A valid line number refersto aline of source
code that actually produced assembly code and isshown in
bold.

Double click on any bold line number in a source browser
or Event Browser window (See Browsing options for more
information).

Double click on an address in the Disassembly window to
set a breakpoint on an address.

Command window

The b command is used to set and display breakpoints. The
breakpoint command accepts the following syntax:

break [/<options>] [<location>] [{<action}]

See The break command in the “ ZAP Commands” chapter for
a compl ete description.

Page 3-9

Typeb:line# in the command window to set a breakpoint
on the line number in the current source file.

Type b function() in the command window to set a break-
point on every line of the function().

Type b/4 main(): 8 to set a breakpoint on line 8 of the
function main that will only halt execution every fourth
timethe lineis executed.

Typeb foo():3 {u i 2} to set a breakpoint on line 3 of
function foo() and perform the action specified inside the
curly braces. In this case, the action is to update variablei
to 2 when the breakpoint is taken.

© Copyright 1999 by COSMIC Software

Program Execution

Deactivating/Activating Breakpoints

ZAP alows you to deactivate or suspend any breakpoint without
removing it from the system. You can then selectively activate them
as needed. When abreakpoint is deactivated it will not halt or
interfere with execution. Note: The breakpoint highlight will change
colors when you activate and deactivate a breakpoint. Choose any
one of the following methods to activate and deactivate breakpoints:

Mouse and Menu

To activate or deactivate a breakpoint double click on a
breakpoint line number in the source window or source
browser window while holding down the shift key.

Double click on an active breakpoint and choose on/off
from the pull down menu to activate or deactivate the
breakpoint.

Choose Browse from the Events M enu and doubl e click on
abreakpoint while holding the shift key to activate or
deactivate the breakpoint.

Choose Browse from the Events M enu and doubl e click on
abreakpoint. Choose on/off from the popup menu to
deactivate or activate the breakpoint.

Choose Events from the Browser menu and double click on
an active breakpoint while holding the shift key to
deactivate the breakpoint.

Choose Events from the Browser menu and double click on
an active breakpoint. Choose on/off from the popup menu
to deactivate or activate the breakpoint.

Command Window

The Code Event Editor is not available asa Command Window
option.

Page 3-10

© Copyright 1999 by COSMIC Software

Program Execution

Deleting Breakpoints

Breakpoints are completely removed from the system by deleting
them. Choose any of the following methods to delete a breakpoint.

Mouse and Menu

To delete a breakpoint double click on an active or
suspended breakpoint line number in the source window or
source browser window while holding down the control
key

Double click on an active or suspended breakpoint line
number in the source window or source browser window
and choose Del ete from the popup menu

Choose Browse from the Events M enu and doubl e click on
a breakpoint while holding down the control key to delete
the breakpoint.

Choose Browse from the Events M enu and doubl e click on
abreakpoint. Choose Delete from the popup menu to
delete the breakpoint.

Choose Events from the Browser menu and double click on
abreakpoint while holding the control key to delete the
breakpoint.

Choose Events fromthe Browser menu and double click on
abreakpoint. Choose Delete from the popup menu to
delete the breakpoint.

Command Window

To delete a breakpoint from the command window you can use
the del command. The following examples demonstrate the
use of the del command to delete breakpoints. See the del
command in the“ ZAP Commands’ Chapter for details.

Page 3-11

Type del # where # is the breakpoint number as shown to

© Copyright 1999 by COSMIC Software

Program Execution

the left of a breakpoint in a Event Browser window.

* Typede * to delete all of the breakpoints from the system.

Code Event Editor

The Code Event Editor can be used to set, suspend and delete
breakpoints. The Code Event Editor also letsyou attach an
action to a breakpoint or create awatchpoint. The Code Event
Editor can be opened in several ways. Choose any one of the
following to open the Code Event Editor:

» Choose Code Event from the Events Menu to open up the
Code Event Editor.

» Choose Browse from the Events Menu, double click on a
breakpoint and choose Edit from the popup window.

» Double click on any breakpoint in the source window and
choose Edit from the popup menu.

» Double click on abreakpoint in any source browser
window and choose Edit from the popup menu.

» Choose Events from the Browser menu, double click on a
breakpoint and choose Edit from the popup menu.

Setting Breakpoints

To set a breakpoint using the Code Event Editor choose the
desired conditions and click on OK to set.

» Choose or enter afunction nameto set a breakpoint on
every line of the function or on function entry.

» Choose Whole to set abreakpoint on every C linein
the selected function.

» Choose On Entry to set a breakpoint on the entry of
the selected file or function.

Page 3-12
© Copyright 1999 by COSMIC Software

Program Execution

Page 3-13

Choose or enter afilenameto set abreakpoint on every line
of the source file.

Choose Breakpoint to stop execution when the condition is
met.

Choose Watchpoint to silently stop execution, execute the
action (if any) and resume execution.

Hit Count Box - Enter a number in the Hit Count Box to
specify the number of times the breakpoint will be
executed before execution is halted.

Choose Active or Suspended from the Status box to
activate or suspend an the breakpoint or click the ON/OFF
button.

Action Box - Enter any ZAP command or combination of
ZAP commands in the action window to attach an action
to the current breakpoint. See the chapter “ ZAP

Commands” for more information about ZAP Commands.

© Copyright 1999 by COSMIC Software

Program Execution

stle Evend Ediloe

Figure 3-3 Code Events Editor

Page 3-14
© Copyright 1999 by COSMIC Software

Program Execution

Displaying and Editing Breakpoints

Active and suspended breakpoints are denoted by a color highlight
over the source line number or assembly address in the Disassembly
window or any Browser window. To display acompletelist of al
existing breakpoints choose Browse from the Events Menu or choose
Events from the Browser menu to open up the Event Browser
window. You can click on any breakpoint listed in this window to
activate, deactivate, delete or edit it. See the Breakpoints section of
this chapter for more information on activating, editing and deleting
breakpoints.

Page 3-15
© Copyright 1999 by COSMIC Software

Program Execution

Activate and Deactivate Functions

ZAP gives you the option to selectively activate or deactivate
functions you want to debug. When afunction is deactivated you can
no longer step into the function or monitor local variables and the
function will not be included in a source trace display. Thisalows
ZAPto operate more efficiently and eliminates unwanted information
in the source trace. By default, ZAP activates all functions in your
application that are compiled with the debug option. The status of
each function is listed in the first column of the Function Browser
Window. An activated function isindicated by (on) and a deactivated
function is denoted by an (off) tag.

Mouse and Menu

To activate and deactivate functions simply double click on the
word (on) or (off) in the first column of any function browser
window.

Command Window

To activate a function use the activatecommand a. Thea
command uses the following syntax. For moreinformation see
the a command in the “ ZAP Commands’ chapter.

activ <name_list>

To deactivate a function use the deactivate command da. For
more information see the d command in the* ZAP Commands”
chapter

deact <name_list>

Where <name_list> is one or more function names to be
activated. Theactiv and deact commands also accept the
standard wildcard character (*) to denote al functions. For
example:

1. Typedeact foo() to deactivate the function foo().

2. Typeactiv foo() to activate the function foo().

3. Typedeact * to deactivate all the functionsin the current
application.

Page 3-16
© Copyright 1999 by COSMIC Software

Program Execution

Browsaer Menu

ZAP's unique browser menu lets you quickly search and monitor
sources, breakpoints, data objects or any memory location.

Event Browser

The Event Browser window displays alist of all existing Events
(active and suspended) This includes code breakpoints and watch-
points. You can click on any event to activate/deactivate, edit or
delete. See the section on Events for moreinformation on setting and
editing events.

m

Figure 3-4 Event Browser Window

Sour ce Browser

Zap's unique source browser alows you to search and view all of
your source codein multiple discrete windows. Y ou can set, edit and
delete breakpoints anywhere in your code without changing the
source window or the current state of execution. Thisis done by
double clicking on C line numbers. There are severa different ways
to browse your source. Choose any of the following:

File Browser

» ChooseFileList from the Browse Menu to open the File
Browser window. Thiswindow contains alist of al the

Page 3-17
© Copyright 1999 by COSMIC Software

Program Execution

source files that make up the loaded application. You can
double click on any sourcefile nameto open a source
browser window containing the selected sourcefile.

Figure 3-5 File Browser Window

File Browser Dialog

* Select File from the Browse Menu to open the File
Browser dialog box. The dialog box containsalist of all
the source files that make up the currently loaded appli-
cation. Choose any source file and click OK to open a
source browser window containing the selected sourcefile.

Page 3-18
© Copyright 1999 by COSMIC Software

Program Execution

m

Eile

dumuoo

i

Imcion =
Boalc
LL LEL

ajil

Figure 3-6 File Browser Dialog Box
Function Browser

» Choose Function List from the Browse menu to open the
Function Browser window. Thiswindow contains alist of
all the source files and functions that make up the loaded
application. You can double click on any source file or
function name to open a source browser window
containing the selected source file or function.

Page 3-19
© Copyright 1999 by COSMIC Software

Program Execution

Figure 3-7 Function Browser Window

Function Browser Dialog

» Select Function from the Browse Menu to open up the
Function Browser dialog box. The dialog box contains a
list of al the source files and functions that make up the
loaded application. Select any source file or function and
click OK to open up a source browser window containing
the selected function.

(o] Lo] [omm | [o=]

Figure 3-8 Function Browser Dialog Box

Page 3-20
© Copyright 1999 by COSMIC Software

Program Execution

Any Source

Choose Any Sourcefrom the Browse Menu to open astandard
Windows browser dialog. You can view any file on your
system. If you open afilethat is part of the loaded application
then the C line numbers will be black and you can set break-
pointsinthefile. If thefileisnot part of the loaded application
then the line numbers will be gray and thefileistreated asread
only

Fdu Mama: Disecdniias: E
.'r "h%e | d-Lrap i hden

o i regE r =1 k1 - :
cris g

s

ke

g

LT

T AT

Lizt Files o Type Diriges

|!h|||'ul-rlln-l: +| | — I _*I

Figure3-9 Any Source Browser Dialog Box

Memory Browser

The memory browser alows you to examine any valid memory
locations in severa formats including a disassembly.

. Choose M emory from the Browse Menu and select
Data in the Memory Window Configuration dialog
box to display or dump memory.

. Choose M emory from the Browse Menu and select
Code inthe Memory Window Configuration dialog
box to disassemble ablock of memory.

See Displaying and Updating Memory in the chapter 5 (Monitoring

Page 3-21
© Copyright 1999 by COSMIC Software

Program Execution

Application Data) for more details on displaying memory.

Variable Browser

The variable browser allows you to view all of the variablesin
the loaded application. There are three different formatsyou
can useto display the variable information. The Brief format
displays the variable name and type. The Standard format lists
the variable name, type and value and the Full format displays
variable name, type, value and address. Thereare also four
different display options as described bel ow.

. Choose In Current Function submenu to display all
variables local to the current function.

. Choose In Current File submenuto display all static
variables in the current file scope, global variables
declared in the current file and all variables local to
the current function.

. Choose In Global List to display al variablesin the
current scope including extern globals, statics and
locals.

Page 3-22
© Copyright 1999 by COSMIC Software

Program Execution

Cross Reference Browser

The Cross Reference Browser displaysthe calling tree for application

functions.

Page 3-23

Function Cross Reference

This dialog window allows you to choose a particular function
to display the cross reference information. Click on afunction
name to open a Cross Reference window.

m

[Fom

mri
S LET] doim ¢
ol wal B
Lo s SR L}
ama

e IR

mila
ewd .
=

e

Figure 3-10 Function Cross Reference Dialog

Cross Reference Window

The Cross Reference Window displays the function calling tree
for aparticular function. Double click on a colored function
nameto display the cross reference tree for that function.

Cross Aeference

~F loat _matht

ald Fill_tahled¥
1 imitialize_datel} — indtialize dabeld
~pEropwl)

initislize_dag
madind}

Figure 3-11 Cross Reference Window

© Copyright 1999 by COSMIC Software

Program Execution

Symbol List Browser (sorted)

The Symbol List Browser provides alist of all global C and
Assembly symbols sorted by address or alphabetically by name.
Double click on any file name to display a source browser window.
Double click on any symbol name and select from the following:

Address of Displays the address of the symbol

Evaluate as Displays the value of the symbol in byte,
word or long format.

Update as Allows you to update the contents of the
symbol as a byte, word or long value.

Set Breakpoint Sets a breakpoint at the symbols address.
Show Code Displays a disassembly of the symbols

address.
Show Data Provides a data dump staring at the address
of the symbol.
= e 0B
Caet "En asmmase ook L amyest files Daidasahay/bibLibe. hadibuid. s (N
*I -I ¥l in ey ECRT ..|.|:

Figure 3-12 Sorted Symbol List

Page 3-24
© Copyright 1999 by COSMIC Software

Program Execution

Symbol Browser

The Symbol Browser window allows you to quickly search through
the symbol table to find the address of asymbol. Simply typethe
symbol name or a part of the name to search thelist. Click on the
symbol to display the address.

m

Symbal walur
| T |1 10
nddap _1-.

W

heinm
iz |
dizg

uboaun

Fuger

I ST

mahi

hah

By

R +

Map

Choose Map to display the application segments along with their
corresponding starting and ending addresses and segment sizes. This
isidentical to selecting Application Map from the File menu.

Page 3-25
© Copyright 1999 by COSMIC Software

Program Execution

Page 3-26
© Copyright 1999 by COSMIC Software

CHAPTER

A

Monitoring Application Data

ZAP offers several advanced features to help you optimize your C
code as well as track down those hard to find bugs. This chapter
includes the following sections:

*
*

*

Page 4-1

Monitoring Variables and Expressions
Updating Variables

Evaluating Expressions

Displaying and Updating Memory
Evaluating Assembly Symbols
Displaying and Updating Registers
Displaying the Stack Frame

© Copyright 1999 by COSMIC Software

Monitoring Application Data

Monitoring Variables and Expressions

ZAP provides an extensive monitoring facility. You can monitor or
watch variables one at atime in the Monitors window or view all the
variables in the current scopein the Variable window. Both windows
are updated each time program execution is halted.

M onitors Window

Choose Monitors from the show menu or simply monitor avariable
or expression and the Monitors window will automatically open.
ZAP alows you to monitor as many variables as you want and
change the display format of any variable.

Adding Monitors

There are severa different ways to monitor variables and
expressions. Choose any of the following methods.

Mouse and Menu

To monitor or watch avariable, double click on avariable
name in the source window and choose Monitor from the
pop-up menu.

To bypass the pop-up window, double click on avariable
name while holding down the control key.

Drag and Drop - Right Click on the variable name and drag
it to either the monitor window or it's icon on the button
bar.

To monitor an expression, select the entire expression by
dragging with the left button and choose Monitor from the
pop-up menu.

To bypass the pop-up window, select the expression while
holding down the control key.

Command Window

Use the monit command with the variable name or expression
to add it to the Monitors window. The following examples

Page 4-2

© Copyright 1999 by COSMIC Software

Monitoring Application Data

demonstrate some common uses of the monit command. For
more detailed infor mation see the monit command in the“ ZAP
Commands’ chapter.

. Type monit i to monitor the variablei.

. Type monit /x ito monitor the variablei in
hexadecimal format.

. Type monit &i to monitor the address of variablei.

. Type monit i+1 to monitor the value of the
expression “i+1”

. Type monit /s buffer to monitor the variable buffer
asastring.

NOTE

Variables and expressions must be in the current scope to be
evaluated or monitored.

Monitor Format

ZAPdisplaysall variablesin their declared formats by default.
However, you can change the format by double clicking on
any variable name or expression in the Monitors Window and
choosing aformat from the pop-up submenu.

Deleting Monitors

» Todelete amonitor smply double click on avariable name
or an expression in the Monitors window and choose
Delete from the pop-up window.

Address of SourcelLines

To display the address of any active linein the source window or
source browser window choose Show->Address from the source
window menu or double click on the line number while holding down
the shift key.

Page 4-3
© Copyright 1999 by COSMIC Software

Monitoring Application Data

Updating Variables

ZAP letsyou update or change the value of any variablein the current
scope.

Mouse and Menu

To update avariable, double click on the variable name and
choose Update from the pop-up window. This opensthe
Update dialog box where you can enter anew value for the
selected variable. The entry format can be changed by clicking
on the Format button and choosing the desired format from the
pop-up window. This allows you to enter the new value in any
of the following standard formats. ZAP will make any
necessary conversions.

Character - Enter the desired ASCI| character between the
apostrophes.

Octal - Enter an octal valuein standard C notation with using a
leading zero.

Decimal - Enter asigned decimal value.
Unsigned - Enter an unsigned value.

Hexadecimal - Enter an hexadecimal value in standard C
notation using aleading Ox. (e.g., 0x100 for hexadecimal 100)

String - Enter an ASCI| character string between the double
quotes.

=37

:Enrmu!: Cancel

Figure 4-1 Update Dialog Box

Page 4-4
© Copyright 1999 by COSMIC Software

Monitoring Application Data

Command Window

The update command is used to update a variable from the
command window. The following examples demonstrate
some common uses of the update command. For more detailed
infor mation see the update command in the“ ZAP Commands’
chapter.

. Typeupdate i 3or update i=3to update variablei
to the value of 3.

. Type update buffer “abc” to update the character
string buffer to abc.

. Typeupdatech ‘a’ to update the character variable
chto the letter a

Page 4-5
© Copyright 1999 by COSMIC Software

Monitoring Application Data

Evaluating Expressions

ZAPalowsyou to display the value of any variable or expressionin a
temporary pop-up window. Thisfeature helpsavoid cluttering up the
Monitors window with variables and expressions that you only need
to display occasionally.

Evaluate Expression

There are severa different ways to evaluate variables and expres-
sions. Choose any of the following methods.

Mouse and Menu

To evaluate avariable, double click on avariable namein
the source window and choose Evaluate from the pop-up
menu.

To bypass the pop-up window, double click on avariable
name while holding down the shift key.

To evaluate an expression, select the entire expression by
dragging with the | eft button and choose Evaluate from the
pop-up menu.

To bypass the pop-up window, select the expression while
holding down the shift key.

Command Window

Use the eval command with the variable name or expression to
evaluateit. The following examples demonstrate some
common uses of the eval command. For more detailed infor-
mation see the eval command in the “ ZAP Commands’
chapter.

Page 4-6

Type eval i to evaluate the variablei.

Type eval /x i to evaluate the variablei in hexadecimal
format.

Type eval &i to evaluate the address of variablei.
Typeeval i+1 to evaluatethevdue of the expression “i+1"
Type eval /s buffer to evaluate the variable buffer as a
string.

© Copyright 1999 by COSMIC Software

Monitoring Application Data

Displaying and Updating Memory

ZAP alowsyou to display, disassemble or modify any block of
memory. This can be done using either the Browse or View menu.
Choose M emory from the Browse Menu or the Show Menu to open
the Memory Window Configuration dialog box. This box requires
you to enter the starting address for the memory block to be
displayed. You aso need to choose whether you want the contents of
the memory block disassembled (Code) or araw data dump (Data)

Address: I]xEI]I]I]|

Format 0Ok

OQude

@ Data Cancel

Figure4-1 Memory Window Configuration Dialog Box

Disassembling Memory

Choose Code under format in the Memory Window Configuration
Dialog box and enter avalid code address in the Address box. This
will open a browser window containing a disassembly of the
specified memory block including symbols. You can set a breakpoint
by double clicking on any memory address in the disassembly.

Displaying Memory
To produce araw data dump Choose Data under format in the
Memory Window Configuration dialog. Thiswill bring up the Data

Page 4-7
© Copyright 1999 by COSMIC Software

Monitoring Application Data

Configuration dialog box which is used to format the Raw data To
configure the data display, you have the following options:

1. Address - Enter the desired starting address or symbol for
the memory dump in the address box.

2. Size- Choose a convenient data size for the display. Byte,
word or long word.

3. Format - Choosethe desired display format; Octal, decimal
or hexadecimal .

4. ASCII - Choose Yesto include an ASCII display next to
the memory dump. Choose No to show only the numerical

display

o

Sire Eormag frnin -
4 Bt 0 @ Yo
£ Loeg 5 Her

Figure4-1 Data Configuration Window

Updating Memory
If you configure the display for datayou can double click on any
valuein the numerical or ASCII display to update. For exampleto

update address 0x00410 in the display below, double click on the
value b000 next to address 0x00410 and enter the new value.

Page 4-8

© Copyright 1999 by COSMIC Software

Monitoring Application Data

4 data:0xc000 —

Addreszs Dump Fill

Format

5-Records

cB88
cB@8
cAif
@18
cBz2e
cB28
ca3n
cA3s

cfBAh
ab3i4d
leee
h4f9
2882
£216
872c?
B8 7e

fece
2711
1ci8
3B2B
6bc3l
cH2e
bcoBb6
bcHB

c2f@
34h?
Ba78
ehce
8eB8
28fe
ZchBs
cdc2

ed3l
64a3d
3aa4
A8380
8225
1bh?6
887
edib

0. “NBpmi
&4’ _47di

Fill Memory

Figure4-1 Data Display Window

The data display can be used to fill memory with a pattern. Choose
fill from the Data display menu to open the Memory fill window. In
the memory fill window you can enter afill pattern or choose random
to have ZAP create a random pattern. Select the data size and the
address rangein the “To” and “From” boxes. Choose verify to have
ZAP read back thefilled memory and verify that it iscorrect. Seethe
Fill command in the chapter “ZAP Commands” to use the command
window or debugger script to fill memory.

Memaory Fill [X] |
Size
g With IEI:-:aa o
IEI:-:4EIEI
€ Word Fram
i Lotig To ||:|:-:1|:||:||:| v Weerify Lancel |

Page 4-9

Figure4-2 Data Fill Window

© Copyright 1999 by COSMIC Software

Monitoring Application Data

Saving a Memory Dump to afile

Click on Dump in the Data Display window to save the raw memory
dump to afile. Enter the address rangein the Memory Data Dump
window and enter or select afileto save the dump.

Saving Memory Dump as S-Record for mat.

Click on S-Record in the Data Display window to save the memory
dump to afilein S-Record format. Enter the address range in the
“From” and “To” fieldsin the Memory Data Dump window and enter
or select afile to save the S-Record.

Memorny Data Dump ﬂ

File Mar: Disectosns:
|I==t=|5| c:'my documents Erom
= = a5
= My D'oousenls
e M7

- -
List Filez of Type Drives: Cancd |

|5 Recod Fleel'mes) =] (BB =l

Figure 4-3 Data Dump as S-Record Window

Display Highlights

ZAP provides a convenient way to keep track of memory modifica-
tions using colored highlights to denote memory changes. Memory
highlights are updated each time execution is halted and cleared upon
reset.

Page 4-10
© Copyright 1999 by COSMIC Software

Monitoring Application Data

Evaluating Assembly Symbols

ZAP alows you to display the value of any globa symbol in a
temporary pop-up window. Doubleclick on any global symbol in
any source window to open popup window with the following

options.

Address of

Evaluate as

Update as

Set Breakpoint
Show Code

Show Data

Page 4-11

Displays the address of the symbol. Y ou can
also get the address by holding down the
shift when double clicking on the symbal.

Displays the value of the symboal in byte,
word or long format.

Allows you to update the contents of the
symbol as a byte, word or long value.

Sets a breakpoint at the symbols address.

Displays a disassembly of the symbols
address.

Provides a data dump staring at the address
of the symbol. Alternatively hold down the
control key when double clicking on the
symbol.

© Copyright 1999 by COSMIC Software

Monitoring Application Data

Displaying and Updating Registers

ZAP provides awindow display dedicated to the CPU registers. The
Register window allows you to display and update any of the
processor registers with a point and click. ZAP also highlights
changes to the CPU registers each time the Program Counter isincre-
mented so you can track CPU changes instruction by instruction. The
register display is updated each time program execution is halted or
after every single step.

Page 4-12

m

To open and close the Register Window, Choose Registers
from the Show menu or type the r command in the
Command Window. Seether command inthe“ZAP
Commands’ chapter for more information.

To update a register directly simply double click on the
value of the register and enter anew value.

To update a register with a symbol or function double click
on the name of the register to open the update register
window. Click on Symbol to open the Symbol Browser or
click on Function to open the Function Browser Window.
Select thedesired symbol or function to update the active
register.

o
| |

[Eymbol | : Function Cancel

Figure4-1 Update Register Window

© Copyright 1999 by COSMIC Software

Monitoring Application Data

Displaying the Stack Frame

The Stack Window displays the current stack frame and
arguments with the active function nested to the bottom of the
display. The stack display is updated each time program
execution halts. The Stack Window allows you to double click
on any function in the stack frame to open up a Source Browser
Window containing that function. To open and close the stack
Window choose Stack from the Show menu or usethe T
command. For more information about the Toggle Stack
Display command, seethe T command in the “ ZAP
Commands’ chapter.

= stack M[=]

Save Pint

DT]

£i11 tmhlie()
fmctie)
Sactifxd)
fmctiix)
factilnd)
Smctiixl)

1] |)
Figure4-1 Stack Window

Page 4-13
© Copyright 1999 by COSMIC Software

Monitoring Application Data

Page 4-14
© Copyright 1999 by COSMIC Software

CHAPTER

5

Advanced Topics

ZAP offers several advanced features to help you optimize your C

code as well as track down those hard to find bugs. This chapter
includes the following sections:

¢+ Simulated I/0

Page 5-1
© Copyright 1999 by COSMIC Software

Advanced Topics

Simulated 1/0

ZAP provides ageneral facility to perform simulated 1/0 using files
stored on your computer. Simulated I/O is ameans by which you can
bring input right into you embedded system or send output from your
system to datafiles on your computer. These files can be created and
manipul ated with standard computer utilities like spread sheets and
data bases and math programs. Embedded systems development has
always had one big problem. It isdifficult to get datainto the system
to test the algorithms until most or al of the hardware is finished.
Simulated /O bridges the gap. You can create dataor stimulus files
that can be read into the system from anywhere in the system as easily
as setting awatch point.

Simulated /O uses the fopen, fclose, fread and fwrite commandsin
conjunction with the watch point mechanism. These commands can
also be used directly in the command window for you just want to get
or output something onetime or periodically throughout acommand
script. To setup the mechanism follow the steps below.

1. Open thefiles you want to use for simulated I/O using
fopen. (e.g. fopen/c:1 c:\test.out)

2. Setawatch point in your application where you want to
send or receive data. Thisis often in afunction that reads
or writesto ahardware 1/O register. Note the application
must be able to execute to this location. You may need to
set additional watch points to set some conditions so
execution will get the desired location.

a) Enter the desired I/0 command in the action box of the
watch point edit window. e.g. fwrite/c:1 “%d"var

3 Set abreakpoint to stop the application after the l/O is
finished.

4. Execute the application to the breakpoint or till the end.
5. Closethel/O files using the fclose command. (e.g. fclose/
cl)

Page 5-2
© Copyright 1999 by COSMIC Software

Advanced Topics

In general, you'll want to create a script to setup the watch points with
the appropriate actions for your specific application. Seethe chapter
“ZAP Commands’ for details on the commands record, input,
watch, fopen, fclose, fread and fwrite.

The following example uses an input script to open two files and set
two watch pointsto simulateinput from afile process the input using
the target processor and then output the result to afile on the host
computer.

Example

Thefile below is asimple program which reads in a couple of
integers adds them together and outputs the result to afile as
formatted text using printf.

#include <stdio.h>

int a,b,sum;
int getinput(void);
int putchar (char c);

void main(void)
{
a = getinput();
b = getinput();
sum = a+b;
printf(“ The result of a+b is%d \n” ,sum);
END MAIN: ;
} // END MAIN

The following routines are dummy input and output routines. These
could be any 1/0 routines. The simulated I/O mechanism is created
by the watch points with the fread and fwrite commands. Note the
labels OUTCH and INCH. These are standard C goto labels.
Although, the goto feature in C has traditionally been taboo, using
just the labels is useful for creating debugger breakpoints and watch-

Page 5-3
© Copyright 1999 by COSMIC Software

Advanced Topics

points. These labels are treated as local symbols and alow you to
create scripts which contain relative break and watch points within a
function. Without using such labels you would need to know which
line of the function you want to set the break and thusif you modify
the source file you may need to modify any scripts containing break-
point in that function.

NOTE
If you want to use thelocal |abels (goto) described abovein a
ZAP script you need to compile with extra debug information.
Use the -xx option on the preprocessor/parser. for example
cx6812 -pxx +debug -vl aciac

Page 5-4

© Copyright 1999 by COSMIC Software

Advanced Topics

Thefollowing isaZAP input script that will load the example appli-
cation open the two 1/0O files, set two watch points to perform the I/0
simulation and then execute the application. Each time the fread
watchpoint is taken the next valuein thefileisread in to simulate a
flow of input. The fwrite watchpoint routine appends output to the
file and so as not overwrite the previoudy written information.

Page 5-5

© Copyright 1999 by COSMIC Software

Advanced Topics

Thefile data_in.txt contains the following data before and after the
script is executed:

After executing the script the file data_out.txt is created and contains
the following:

If you want to simulate your hardware controlled I/O registers you
may need to add additional watch pointsto set the proper conditions.
For example, it is common in an SCI routine to loop on the transmit
enable to make sure the hardware is ready to receive a character.
When simulating the SCI you would need to either #ifdef around the
loop or set an additional watch point and set the condition. e.g.

watch putchar():SCI_L OOP {update SCSI = (SCSI * SCTE)}

Page 5-6
© Copyright 1999 by COSMIC Software

CHAPTER

6

ZAP Commands

ZAP provides an extensive command set which duplicates the
functionality of many of the mouse selections and popup windows.
The command Window can also be used to create an automated
debugging session by loading an input command file. An input
command file may contain any valid ZAP commands. This chapter
describes the ZAP commands and their syntax and includes the
following sections:

*
*
*
*

*

Page 6-1

Command Line Syntax

Specifying Memory Locations and Registers
User defined variables

Entering ZAP Commands

Command Descriptions

© Copyright 1999 by COSMIC Software

ZAP Commands

Command L ine Syntax

All ZAP commands use the following basic syntax:

<command_name> [/options] [<argument>] [<argument>]

<command_name> specifies a ZAP debugger command.
Commands must be separated from its options and arguments by one
or more spaces or horizontal tabs.

<options> specifies extra options for the command. Each optionis
preceded by aforward slash (/). <options> must be placed after the
<command_name>, but before the <argument>.

<argument> specifies an optional location within your C or assembly
language source code, a data object, an unsigned decimal integer, a
memory address, or a C language expression. The possible forms that
<argument> can take are described below. Theargument must
follow any specified options with one or more spaces or horizontal
tabs.

Page 6-2
© Copyright 1999 by COSMIC Software

ZAP Commands

Specifying Memory L ocations and Registers

Many ZAP commands require or accept an <argument>. An
argument may be a constant, internal processor register, memory
location, file name and line number, function name or variable name.
The argument command language accepts many C style expressions
and operators so objects may be accessed directly or indirectly.

e Constants and Expressions
» Target processor’s registers
» Sourcefiles and Functions

» Dataobjects and Pointers

Constants and Expressions

ZAP commands accept any legal C constant and many C operators
and expressions. ZAP also accepts binary constants using the Ob
prefix notation.

Binary Constants- Ob prefix (e.g. 0b1011)

Decima Congtants - standard notation (i.e no prefix)
Hexadecimal Constants - Ox prefix (e.g. OX1AB)
Octal Constants - O prefix (e.g. 0765)

Register Manipulation

A register specification must have the following form:

$<register_name>

where <register_name> follows the naming conventions of the
processor’s manufacturer. A register specificationisidentified by its
leading $ character. You can use any CPU register listed in the
register window simply by prefixing it with a$.

Page 6-3
© Copyright 1999 by COSMIC Software

ZAP Commands

User defined variables

ZAP allows the user to define any number of user defined variables.
A user defined variableis a symbol defined and recognized by ZAP
for usein expressions. A user defined symbol isalways prefixed with
the ‘.’ character. To create a user defined variable smply useit in an
expression. Ifit doesn't exist it will be created with aninitial value of
zero. For example:

To create the variable .temp and set it equal to the constant 10 you
could write:

ZAP> eval .temp=10

To set the variable .temp equal to the program variable “varl”:

ZAP> eval .temp=varl

To create and set the variable .tmp_cc equal to the condition code
register and test .tmp_cc to see if interrupts are enabled:

ZAP> eval .tmp_cc=$cc
ZAP> if (.tnp_cc ~ 0x8) mess “interrupts disabled\n”
el se ness “interrupts enabl ed\n”

Sour ce files and Functions.

ZAP command arguments can a so be alocation specifier designating
one or more valid lines of C or assembly language source code. A
valid line of source code is defined as any line that is associated with
an executabl e piece of code which is compiled in debug. A source
line designation can have one of the following forms:

file_name:line_number - Specifies aline number in the given source
file. e.g To set abreak point on line 55 of testt.c the command would
be:

break test.c:55

Page 6-4
© Copyright 1999 by COSMIC Software

ZAP Commands

file_name: - Specifiesall executable C linesin the named sourcefile.
e.g To set abreak point on al source linesin aparticular sourcefile
the command would be:

break test.c

function():line-number - Specifies a line number in the named
function. The current sourcefile is assumed. e.g. To set abreakpoint
on aspecific line of afunction in the current source file the command
would be:

break main():38

function() - Specifies all executable C lines in the named function.
e.g. To set abreakpoint on all source lines in a specific function the
command would be:

break main()

NOTE

Only source line numbers which correspond to actual code are
recognized by the line number specification.

Data Objects

A location specifier for <argument> that designates a data object can
have any one of the following forms:

data_object_name - Specifies aglobal data object. e.g. To evaluate
aglobal variable named bar you would type:

eval bar

file_name: data_object_name - Specifies a static variable with file
scope. e.g. To evaluate afile static variable bar when the necessary
fileis not in the current scope:

Page 6-5
© Copyright 1999 by COSMIC Software

ZAP Commands

eval test.c:bar

function():data_object_name - in scope of function named. eg. To
evaluate avariable “tmp” local to the function main():

eva main():tmp

[:]data_object_name - scope of current function. e.g. To monitor
the local variable “i” whileit isin scope:

monit :i

number - explicit constant specified in any of the following formats:
hexadecimal (0x100), decimal (16), octal address (020) or binary
(Ob10000)

expression - C language expression

A data object nameisan identifier currently in scope as a data object.
You can change the current scope with the move command. You can
specify adatalocation using a C expression involving register values,
variable names and values, constants and C language operators,
assuming that the result is an addressable object, described as a
LVALUE in C parlance

Pointer Indirection

The debugger can access data objects both directly and indirectly by a
pointer, asin the C language itself.

You can specify indirection on a pointer data object only as many
times as you specify the pointer attribute in your original declaration.
If you request too many levels of indirection, the debugger prints an
error message indicating a syntax error.

You can use any C expression, referencing structure field through
pointers while you respect the correct C syntax. The expression
evaluator checks for almost the same errors that your C compiler
does.

Page 6-6
© Copyright 1999 by COSMIC Software

ZAP Commands

Entering ZAP Commands

You enter ZAP commands at the “ZAP>" prompt.

You terminate each command with a carriage return, newline, or
linefeed character. ZAP allows you to string several commands
together. To specify multiple commands in response to asingle
prompt, type each command in the usual way and separate each
command with asemicolon *;’ character. A whitespace character on
either side of the semicolon isoptional. ZAP splits multiple
commands on an input line and performs each operation separately,
just asif you had entered each command in response to a separate
prompt.

Page 6-7
© Copyright 1999 by COSMIC Software

ZAP Commands -

Command Descriptions

All commands described are documented in a similar fashion to facil-
itate quick reference. The name of the command appears at the top
outside corner of the page on which it is described. Itsname and a
brief description of the action it performs appears at the top of the text
under the heading Name. A brief synopsis, under the heading
Syntax, describes the command syntax and the options and param-
etersit accepts. In this context, aname enclosed in angle brackets,
such as <argument>, is an element which is defined elsewhere in the
discussion or issdlf evident. In the case of multiple options, the
description of each command tells you which options may be used
together.

The character wild card character **’ directly to the right of an
element denotes an <argument> that may appear one or more times.
The command del, for example, allows one or more eventsto be
deleted. eg. To delete all events you would type:

del /e *

Enter all other charactersin the synopsis as shown.

A more detailed description of the command and the options and
parameters it accepts follows under the heading Function. The
default value for each option, if any, is specified here.

One or more examples follow the command explanation, under the
heading Example. The examples given are not intended to represent
the precise behavior of ZAP for any specific processor or with any
specific program.

Page 6-8
© Copyright 1999 by COSMIC Software

ZAP Commands -

ZAP Commands

The following commands are available in ZAP. Detailed descriptions
of each command follows the summary.

* - print comment

activ - activate function

break - set or modify breakpoint

deact - deactivate function

del - delete breakpoint, monitored or user function
disa - toggle disassembly window

dump - dump memory as byte word or long

eval - evaluate an expression

fclose - Close an open file (as achannel) that was used for 1/0
files - show source files for application loaded

fill - block fill memory

fopen - Open afile (as a channel) for input or output

fread - Read from an open file (channel) and update program
variables

fwrite - write to an open file (channel)

frame - dump the stack to the command window
funcs - show functions for application loaded

go - start or resume execution at the current PC
if - test program condition

input - load a zap command file

istep - step at the disassembly level through the program

Page 6-9
© Copyright 1999 by COSMIC Software

ZAP Commands -

mess - print a formatted message

load - load a file

mm - Modify memory

monit - monitor an expression

move - movein stack frame

ostep - step over at the source level and step over function calls
output - redirect commands and results to afile
path - set the search path for source files

print - print afile or function

quit - quit zap

record - record a session for playback

regs- dump registers to the command window
rem - print comment

remove - deletefile

reset - execute a target reset

session - record a ZAP session which includes the layout and last file
loaded.

stack - show stack

s- step at the source level through the program (enters active
functions)

Si - step at the disassembly level through the program
so - step over at the source level and step over function calls

step - step at the source level through the program (enters active
functions)

Page 6-10
© Copyright 1999 by COSMIC Software

ZAP Commands -

u - update variable

update - update variable

vars - Open avariable browser window
watch - watch an expression

wstack - toggle the stack window
wregs - Toggle the register window

T - toggle stack frames status display
update - update a data object

write - save events or monitors

X - evaluate an expression

zero - clear all events, monitors or reset the processor

Page 6-11
© Copyright 1999 by COSMIC Software

ZAP Commands - *

*
Description

Comment

Syntax

Function

* alows you to write a comment, mainly in acommand file or a
function. The content of the remaining text up to the end of lineis
ignored by the debugger.

Example

In acommand file:

Alias- REM

Comments may be created with either the asterisk (*) or the command
rem.

Page 6-12
© Copyright 1999 by COSMIC Software

ZAP Commands - activ

activ

Description

Activate afunction

Syntax

activ <nane_|ist>

Function

The activ command is used to activate afunction, i.e. to make it
possibleto debug it using ZAP. By default, al functions that have
been compiled for debugging are activated by ZAP. You can
deactivate a function with the deact command; to reactivate it again,
you use the activcommand. A name list is composed of one or
several function names, with their parenthesis and :, separated by
commeas. Typing astar ‘*’ instead of a <name_list> will activate all
possible functions.

Once afunction is deactivated, it behaves asif it had NOT been
compiled for debugging.

The fewer active functions, the quicker ZAP is able to work. So once
afunction has been tested it is worth deactivating it, thus allowing
you to focus more quickly on debugging the remaining functions.

Example

To activate function fact:

ZAP> activ fact():

To activate function fact and foo:

ZAP> activ fact():,foo():

Page 6-13
© Copyright 1999 by COSMIC Software

ZAP Commands - break

break

Description

Set, modify or display breakpoint event

Syntax

break [/<options>] [<location>] [{<action}]

Function
Thebreak command sets or displaysthe“breakpoint” at <location>.

A breakpoint is an event that causes execution of your program to be
interrupted so you can examineits state. You can set a breakpoint on
a C source ling(s) or an absolute address. Program execution will be
interrupted when control passes to that line or address.

A breakpoint can be set on arange of lines rather than on asingleline.
Ranges of lines are specified using the ;" character. For example if
you want to set abreakpoint on lines 20 to 35 of function main() you
would type: br eak mai n(): 20: 35. Typing for example br eak

mai n() : 34 sets a breakpoint on line 34 of main() only.

Options

le:<count> can be used to specify an optional count, which
specifies the number of times the breakpoint must be reached before it
halts execution. It isthen possible for exampleto set a breakpoint
when a particular C line has been executed a specific number of
times.

la | Reactivate asuspended breakpoint

Is | Suspend an active breakpoint. The breakpointisstill set, butis

Page 6-14
© Copyright 1999 by COSMIC Software

ZAP Commands - break

not active and will not cause execution to stop.

When ZAP reaches <location> during program execution < count>
number of times, it performs the specified <action>.

<action> can be any valid ZAP command or set of commands. The
default <action> isto stop, refresh any open windows and prompt
for command input.

If you do not specify <location>, ZAP lists al active breakpoints.
The display of a breakpoint includes various information:

(2) First the breakpoint number between parenthes's, this number will
be used to delete the breakpoint.

(2) The<location> associated with the breakpoint.

(3) If there's an <action> associated with the event it will be
displayed inside curly braces{}.

(4) Next ZAP displays either (User) or (Internal). This denotes
whether the breakpoint was set by the user or the debugger.

(5) Hit count and hitsleft. ZAP displays the count associated with the
event and the number of hits |eft on the event.

(6) Thelastitem in the display isthe Status of the event. The eventis
either (on) meaning the event is active and will be taken or (off)
meaning the event is suspended and will not be taken.

(user) to indicate that the breakpoint has been set by the user or
(internal) to indicate that the breakpoint has been set by ZAP itself for
performing its work; and then the count associated with the break-
point and the number of times|eft before the breakpoint will be taken.

Examples

To set abreakpoint at C source line 12, in function main:

ZAP>break main(): 12

Page 6-15
© Copyright 1999 by COSMIC Software

ZAP Commands - break

The debugger will display:
(xx) test.c main():12 {} (user)(count = 1, left = 1) (on)

To set abreakpoint on every C line of function| enstr ()

ZAP>break | enstr()

The debugger will display
(xx) test.c lenstr():22:34 {} (user)(count=1, left=1) (on)

To set a breakpoint on any line of filemai n. ¢

ZAP>br eak main.c:

The debugger will display
(xx) main.c: any line{} (user) (count = 1, left = 1)

To modify the above breakpoint with a count of 4:

ZAP>break /c:4 main.c:

The debugger will display:
(xx) main.c: any line{} (user) (count = 4, left = 4) (on)

To attach an action to the above breakpoint:

ZAP>break nain.c: {<action>}

The debugger will display:
(xx) main.c:any line{ <action>} (user)(count=4, left=4) (on)

To cancel the action attached to the previous breakpoint:

ZAP>break main.c {}

The debugger will displays:

(xx) main.c: any line{} (user) (count = 4, left=4)

Page 6-16
© Copyright 1999 by COSMIC Software

ZAP Commands - break

To set a code execution breakpoint at the address 0x100:

To list al events currently set:

To Suspend all events currently set:

To Reactivate all currently suspended events:

2
3
(e

Breakpoints can a so be set using the b command line option.

Page 6-17
© Copyright 1999 by COSMIC Software

ZAP Commands - deact

deact

Description

deactivate afunction

Syntax

deact <nane_list>

Function

The deact command is used to deactivate afunction, By default, all
functions that have been compiled for debugging are activated by
ZAP. You can deactivate afunction with the deact command; to
reactivate it again, you usetheactivcommand. A namelistis
composed of one or several function names, with their parenthesis
and :, separated by commas. Typing astar ‘*’ instead of a
<name_list> will activate all possible functions. Onceafunction is
deactivated, it behaves asif it had NOT been compiled for debugging.

The fewer active functions, the quicker ZAP isableto work. So once
afunction has been tested it is worth deactivating it, thus allowing
you to focus more quickly on debugging the remaining functions.

When debugging on real hardware it is agood ideato deactivate
interrupt service routines once they are debugged to avoid getting
stuck in the interrupt routines.

Example

To deactivate function fact:

ZAP> deact fact():

To deactivate function fact and foo:

ZAP> deact fact():,foo():

Page 6-18
© Copyright 1999 by COSMIC Software

ZAP Commands - del

del

Description

Delete breakpoint, monitor or user function

Syntax

del [/options] <argunent>

Function

The del command deactivates a function, deletes a breakpoint,
monitor or user function depending on the option used. The default
option is /e to delete an event. <argument> can be either the event
number as shown in the breakpoint->browser or the <location> used
to create the breakpoint.

Options

le delete one or several breakpoints or watchpoints.
<number_list> isalist of breakpoint numbers, as displayed by the
break command, separated by commas.

/m delete one or several monitors. <number_list> isalist of
monitor numbers, as displayed in the monitor list, separated by
commas. You can remove amonitor even if it is out of scope.

You can specify an asterisks **’ as awildcard as the only argument.
In that case, al objects are deleted.

Examples

To delete all events:

ZAP> del /e *

Page 6-19
© Copyright 1999 by COSMIC Software

ZAP Commands - del

To delete a breakpoint set at foo()

To set a code execution breakpoint at the address 0x100:

To delete the absol ute breakpoint above:

Page 6-20
© Copyright 1999 by COSMIC Software

ZAP Commands - disa

disa

Description
Toggle the disassembly display

Syntax

di sa

Function

The disa command toggles the assembler source display window
starting at the current PC address. Assembler lines corresponding to
the current C sourceline are highlighted in ydlow, default.

Page 6-21
© Copyright 1999 by COSMIC Software

ZAP Commands - dump

dump

Description

dump memory to the command window and output file.

Syntax

dunp /[options] [<address>] [<address>]
dunp /[options] [<address>],[bytes]

Function

The dump command instructs the debugger to dump memory to the
command window and output file. ZAP accepts an address range or
aspecified number of bytes for the display. Note: ZAP will always
dump memory one wholeline at atime. i.e. ZAP will aways dump
at least 16 bytes.

Options
/b for byte output
Iw for word output
/I for long word outpui.
[f:<format> display format.
b Display in binary format
d Display in decimal format
h Display in hexadecimal format
0 Display in octal format

Page 6-22
© Copyright 1999 by COSMIC Software

ZAP Commands - dump

Examples
To dump memory at Ox1EF to 0x200 in decimal words

ZAP>dunp /f:d /w Ox1EF 0x200

thiswill display:

Olef 17748 17442 34182 29240 09029 18006 34696 34901
01ff 21625 39253 21283 09574 21926 22050 58147 08995

To dump at least 20 bytes of memory at OX1EF in hexadecimal words:

ZAP>dunp /f:h /w Oxlef, 0x20

thiswill display:

Olef 6abb 534b 4bdc 444b 736b 6¢6c 6d6d 636b
01ff 6b09 776f 6b6f 0977 6b65 6a66 6369 7365
020f 6866 696b 6a09 776a 646e 0977 6f70 6966

Page 6-23
© Copyright 1999 by COSMIC Software

ZAP Commands - eval

eval

Description

Evaluate an expression

Syntax

eval /[options] [<expression>]

Function

The eval command instructs the debugger to evaluate <expression>.
An <expression> is any combination of variables, constants and
operators following the same syntax rules as a standard C expression,
including array and structure indexing.

The expression and its result value are displayed with the type of the
result. If no optionis specified, pointers and addresses are displayed
in hexadecimal, and signed and unsigned types are displayed in
decimal. You can force a specific display option using one of the
following extensions:

Options
/b for binary output.
Ic for char output.
/d | for signed decimal output.
If:<size> forceasize at symbol.
b Display abyte at address of <expression>
w Display aword at address of <expression>

Page 6-24
© Copyright 1999 by COSMIC Software

ZAP Commands - eval

| Display along at the address of <expression>

/h | for signed hexadecimal output with no leading Ox.
/o | for octal output.

/9 for no output. Thereis no display. Thisis useful to create silent
breakpoints or user functions, when the expression is an assignment.

Is | for string output.
/u | for unsigned decimal output.

X for hexadecimal output. The valueis prefixed by “0x”.

Examples

To evaluatea C variabletab[i]:

ZAP>eval tabli]

thiswill display:
tab[i] = 10

To evaluate a C structure member test.mem1:

ZAP>eval test.nmenml

thiswill display:
test.mem1 = 30

Page 6-25
© Copyright 1999 by COSMIC Software

ZAP Commands - eval

To evaluate the address of the assembly variable _f oo in hex where
_fooisat 0x100 and at address 0x100 is OxF

ZAP>eval /x _foo

thiswill display the address of the symbol _foo:
_foo = 0x100

To evaluate a byte sized assembly variablein hex at _f oo:

ZAP>eval /x [f:b _foo

thiswill display abyte at the address of _foo:
[_foo].b = OxF

Alias- X

The X command is an alias for eval.

Page 6-26
© Copyright 1999 by COSMIC Software

ZAP Commands - files

files

Description
List files used to build program

Syntax

files

Function

fileswill list thefiles that have been linked together to obtain the
program you are currently debugging. It might be helpful to check
that you have al the source files needed.

See Also

funcs

Page 6-27
© Copyright 1999 by COSMIC Software

ZAP Commands - fill

fill

Description

fill memory with specified value(s) starting at <address>.

Syntax
fill /[options] [<address>] [<address>] <val ue>
fill /[options] [<address>],[bytes] <val ue>
Function

Thefill command instructs the debugger to fill memory with the
specified value or with a random fill pattern. ZAP accepts an address
range or a specified number of bytesfor the display.

Options
/b for bytefill
Iw | for word fill
/I for long word fill
Ir | for arandom pattern fill

Iv | requires ZAP to verify thefill pattern by reading back the
memory and comparing it to the fill pattern.

Examples
To fill memory at Ox1EF to 0x200 with the 2 byte value OXAABB:

ZAP>fill /w Ox1EF 0x200 OxAABB

Page 6-28
© Copyright 1999 by COSMIC Software

ZAP Commands - fill

To fill 40 bytes of memory starting at 0x100 with the long value
OXAABBCCDD:

ZAP>fill /1 0x100,20 OxAABBCCDD

Page 6-29
© Copyright 1999 by COSMIC Software

ZAP Commands - fclose

fclose

Description

Closes an open 1/0 channel which in turn closesthe file associated
with the channel.

Syntax

fclose /c:<nunmber>

Function

Thefclose command closes the specified 1/0 channel which resultsin
the closing of the corresponding datafile. Type the “fclose”
command, followed by the channel you want to close (/c:<number>)
Where /c:<number> is required and <number> is an integral constant
corresponding to an open channel.

Example

To close channel 1, which corresponds to the file “foo.txt”:

ZAP> fclose c:1

This closes the file “foo.txt” and channel one so both can be opened
and used again

Example

To open the filec:\test\data.txt and associate it with channel 4.:

ZAP> fopen /c:4 c:\test\data.txt

Channel 4 can now be used by fread to bring datainto the application
from afile outside the application or fwriteto send data outside the

Page 6-30
© Copyright 1999 by COSMIC Software

ZAP Commands - fclose

program to an external file.

To read data in from channel 4 and store the datain program variables
chl and ch2.

ZAP> fread /c:4 "% %l"chl, ch2

Thiswill read thefirst two bytes of “c:\test\data.txt” and storethem in
program variables chl and ch2 respectively.

To closethefile “c:\test\datatxt” type:

ZAP> fclose /c: 4

See Also
fopen, fread, fwrite

Page 6-31
© Copyright 1999 by COSMIC Software

ZAP Commands - fopen

fopen

Description

Open afile and associate with an 1/0O channel for simulated input and
output.

Syntax

fopen /c:<nunber> <fil enanme>

Function

Thefopen command opens afile and associatesit with an I/O channel
to be used by the fread and fwrite commands. Each 1/O channel can
be associated with only onefile at atime. Type the “fopen”
command, followed by an unused 1/0 channd (/c:<number>) and
thenalega <fil ename>. Where/c:<number> is required and
<number> isan integral constant.

The local path for <f i | ename> is the ZA P executable directory.
<number> is an integral constant

The/c option is used to specify the channel to be associated with the
specified file. Thisoption is required.
Options

/a Open and append to existing file if <filename> already exists.
By default, ZAP opens and overwrites the <filename> if it already
exists.

Page 6-32
© Copyright 1999 by COSMIC Software

ZAP Commands - fopen

Example

To open thefile c:\test\data.txt and associate it with channel 4.:

ZAP> fopen /c:4 «c:\test\data.txt

Channel 4 can now be used by fread to bring data into the application
from afile outside the application or fwrite to send data outside the
program to an external file.

To read data in from channel 4 and store the datain program variables
chl and ch2.

ZAP> fread /c:4 "% %l"chl, ch2

Thiswill read thefirst two bytes of “c:\test\data.txt” and storethem in
program variables chl and ch2 respectively.

To closethefile “c:\test\datatxt” type:

ZAP> fclose /c: 4

See Also

fclose, fread, fwrite, rewind

Page 6-33
© Copyright 1999 by COSMIC Software

ZAP Commands - fread

fread

Description

Fread from an open 1/0O channel which corresponds to afile previ-
oudy opened by the command “fopen”

Syntax

fread /c:<nunber> “format” <expression>

Function

The fread command reads data from afile via an associated 1/0
channel and stores the datainto program variables according to the
format specification. Theformat specification issimilar to the ANSI
C scanf function. The format string isfollowed by zero, one or
several expressions, separated by spaces or by commas.

The format may contain symbolic characters (escape sequences) and
several conversion sequences composed with a‘%'’ character
followed by asingle letter. Each converter will correlateto an
expression from the command line, evaluate it, and insert it in the
output, converted as required. Fread accepts the following format
converters:

%d Dataisread asasigned decimal.

%u Dataisread as an unsigned decimal.

%X Dataisread as a hexadecimal value without the Ox prefix.
%0 Dataisread as an octal value without the prefixed by “0”.

%c Dataisread asasingle character. Thereisno special
replacement for control characters. They are displayed as received.

Page 6-34
© Copyright 1999 by COSMIC Software

ZAP Commands - fread

Fread does not expect single quotes around the character.

Example

To open thefile c:\test\data.txt and associate it with channel 4.:

ZAP> fopen /c:4 c:\test\data.txt

Channel 4 can now be used by fread to bring data into the application
from afile outside the application or fwrite to send data outside the
program to an external file.

To read data in from channel 4 and store the datain program variables
chl and ch2.

ZAP> fread /c:4 "% % %"chi, ch2,inl

Thiswill read the first three bytes of “c:\test\data.txt” and store them
in program variables chl, ch2 and inl respectively. If thefile
“c:\test\data.txt” contains the following:

12 a fe
20 b ff

Thefirst time the fread command above is executed

chlissetto 12
ch2issetto‘a
inlis set to Oxfe

The second time fread command above is executed

chlissetto 20
ch2issetto‘b’
inlis set to Oxff

ZAP will continue to increment the file pointer in order to read new
data until the end of fileisreached. If you want to start back at the
beginning of the file either rewind the channel or open and close the

Page 6-35
© Copyright 1999 by COSMIC Software

ZAP Commands - fread

channel and file.
To closethefile “c:\test\data.txt” type:

See Also

fopen, fclose, fwrite, rewind

Page 6-36
© Copyright 1999 by COSMIC Software

ZAP Commands - fwrite

fwrite

Description

Write to an open 1/O channel which correspondsto a file previously
opened by the command “fopen”

Syntax

fwite /c:<nunmber> “format” <expression>

Function

The fwrite command writes data from the loaded application or
directly from the ZAP command window viaan associated 1/0
channel. Fwrite formats the datain the output file according to the
format specification. The format specification is similar to the ANSI
C printf function. The format string is followed by zero, one or
several expressions, separated by commas. The format string may
contain symbolic characters (escape sequences) and several
conversion sequences composed of a‘ %' character followed by a
single letter. Each converter will correlate to an expression from the
command line, evaluate it and convert it if necessary and insert it in
the output file. Fwrite command accepts the following format
converters:

%d Dataisoutput as asigned decimal.

%u Datais output as an unsigned decimal.

%X Datais output as a hexadecimal value without the Ox prefix.
%0 Dataisoutput as an octal value without the prefixed by “0”.
%c Datais output as asingle character. Thereisno special

Page 6-37
© Copyright 1999 by COSMIC Software

ZAP Commands - fwrite

replacement for control characters. They are displayed as received.
Fread does not expect single quotes around the character.

Example

To open the filec:\test\data_out.txt and associate it with channel 4.:

ZAP> fopen /c:5 c:\test\data_out.txt

Channel 5 can now be used by fwrite to output data from the appli-
cation to afile outside the application.

To write the value of program variables chl, ch2 and inl to channel 5
and thus out to “c:\test\data_out.txt”.

ZAP> fwite /c:5 "%l % %"chl,ch2,inl

If the program variables have the following values when the fwriteis
executed:

chl=25
ch2="'¢€
inl = OxAB

The following will be output to “c:\test\data_out.txt":
25eAB

If the same fwrite is executed again without closing the channel then
ZAP will append to the same file. If the program was executed and
the variables have changed then the new values will be output.

ZAP will continue to increment the file pointer in order to read new
data until the end of fileisreached. If you want to start back at the
beginning of the file either rewind the channel or open and close the

Page 6-38
© Copyright 1999 by COSMIC Software

ZAP Commands - fwrite

channel and file.

ZAP> rewind /c:5

To closethefile “c:\test\data out.txt” type:

ZAP> fclose /c:5

Example 2

To writethe value of program variables chl and ch2 to channel 5 with
extra formatting.

ZAP>fwrite /c:5 "variables chl=%l\n ch2=%l\n" chi, ch2

If program variables ch1=5 and ch2=7 then the output file would |ook
like the following:

variables ch1=5
ch2=7

See Also

fopen, fclose, fwrite, rewind

Page 6-39
© Copyright 1999 by COSMIC Software

ZAP Commands - frame

frame

Description
Ligt the functions in the current stack frame with arguments.

Syntax

frame

Function

The frame command will display the functions currently in the stack
frame with their corresponding arguments. The list will be captured
in the command window and the file specified by the output
command if any.

Page 6-40
© Copyright 1999 by COSMIC Software

ZAP Commands - funcs

funcs

Description
List functions used to build program

Syntax

funcs

Function

funcswill list the functions that have been linked together to obtain
the program you are currently debugging. It might be helpful to check
that you have al the source files needed, and to know where a
particular function is located.

Functions will be displayed by source file. Each function is prefixed
by aword indicating whether it is active (see active command).

(on) Indicates that the functionis activated, but breakpoints are not
yet loaded

(act) Indicates that the function is activated, and breakpoint have
been |oaded.

(off) Indicates that the function is deactivated.

Thisinformation is useful mainly for an emulator or board version,
and the effects associated with these states depends on the actual
target system.

Example
To list the functions of a specific file, type
funcs

Page 6-41
© Copyright 1999 by COSMIC Software

ZAP Commands - funcs

Produces the following output to the command window:

Functionsin file: test.c
(on) extern void main() at Oxa71

(on) externvoid init() at Oxadb

See Also

files

Page 6-42
© Copyright 1999 by COSMIC Software

ZAP Commands - go

go

Description

Start or Resume execution

Syntax

go [<location>]

Function

The go command starts or resumes program execution. Once begun,
execution will continue until program termination or until ZAP
encounters abreakpoint. If you specify a <location>, execution is
stopped when this location isreached. <location> may be any line or
object suitable for a breakpaint.

Example

The following command will execute the code starting at the current
PC until the function main() is entered.

go mai n()

Page 6-43
© Copyright 1999 by COSMIC Software

ZAP Commands - if

Description

Test program condition.

Syntax

if (<condition>) <CVD>,; else <CMD> ;
i f (<condition>){<CVD> <CMD2>;} else{<CVD> <CMVD2>; }

Function

Theif command tests a program condition and executes aZAP
command(s) if the condition is true and can optionally execute
another ZAP command(s) if the condition isfase. <CMD> may be
any ZAP command. Theif command can be used as part of an action
to awatchpoint.

Example

The following command will test the program variable “ count” and if
“count” is > than 25 a message will be written to the command
window and output file (if any).

if (count > 25) nmess “warni ng count out of range”

Example 2

The following command will set awatch point at label in the main
function called “TEST_LABEL" test the value of the program
variable “zchl” and write a message out to afile open on 1/O channel
1 and then continue executing.

wat ch main(): TEST_LABEL { if (zchl < 4) fwite /c:1
"zchl < 4\n" ; }

Page 6-44
© Copyright 1999 by COSMIC Software

ZAP Commands - input

input

Description

load azap command file and start executing the commands.

Syntax

i nput <fil ename>

Function

Theinput command redirects command input for ZAP. Type the
“input” command, followed by alegal file name<fi| enane>, to
redirect debugger command input so that it comes from the named
file. Aninput file may contain any valid ZAP commands.

Thiscommand is useful for entering debugger input from acommand
file to provide an automated session.

The input command files continues to execute until the end of he
command file, or until another input command or the “escape” key is
pressed.

Example

To redirect input from the file demo.mac:

ZAP> i nput deno. mac

See Also

record, output

Page 6-45
© Copyright 1999 by COSMIC Software

ZAP Commands - istep

Description

Execute one or more assembly instructions.

Syntax

i step [<condition>]

Function

Theistep command controls how many assembly instructions of your
program ZAP executes. By default, istep executes one assembly
instruction. The <condition> associated to the ‘istep’ command can
take various forms: it can be a <count>, a specified file, arange of
linesin a specified file, a specified function, or arange of linesin a
specified function. It is then possible to instruct the debugger to step
through the program until a specified line is reached.

If you specify anumber for the <condition>, ZAP will execute the
specified number of assembler instructions instead. If you specify a
location for the <condition>, ZAP will execute one assembly
instruction at atime until it reaches the location. All open windows
will be refreshed after every single step.

While executing assembl er instructions the disassembler window is
always open and the current machine instruction is highlighted with a
‘>’ character at its left.

Example

To single step 10 assembly instructions:

ZAP>i step 10

Page 6-46
© Copyright 1999 by COSMIC Software

ZAP Commands - istep

To step assembly instructions until you reach function lenstr()

To step assembly instructions until you reach any linein filemain.c

To step assembly instructions until you reach line 45 of put()

Alias- si

The S command is an alias for istep.

Page 6-47
© Copyright 1999 by COSMIC Software

ZAP Commands - load

load

Description
Load file

Syntax

|l oad [/<options>] <file>

Function

Theload command is used to load afile. Theloading happens
exactly asif the file had been specified from the file menu of the ZAP.
The PCis set to the address of the symbol __stext, which is typically
defined in the crts run time startup routine and used for the reset
vector. If this symbol isnot found, ZAP will set the PC to the first
address of thefirst .text segment. Any previously loaded files are
completely lost.

Page 6-48
© Copyright 1999 by COSMIC Software

ZAP Commands - mess

mess

Description

Print aformatted message

Syntax

mess “format” <expression>

Function

The mess command displays a character string, including values
converted from expressions. This command acts as the C function
printf. The format string is followed by zero, one or severa expres-
sions, separated by spaces or by commas.

The format may contain symbolic characters (escape sequences) and
several conversion sequences composed by a‘ %’ character followed
by asingle letter. Each converter will correlate to an expression from
the command line, evaluate it, and insert it in the output, converted as
required. Converters are the following:

%d Theresult is converted to signed decimal.

%u The result is converted to unsigned decimal.

%X The result is converted to hexadecimal, prefixed by “0x”.
%0 Theresult is converted to octal, and prefixed by “0”.

%c Theresult is displayed asasingle character. Thereisno special
replacement for control characters. They are displayed as received.
There are no single quotes around the character.

Page 6-49
© Copyright 1999 by COSMIC Software

ZAP Commands - mess

%s if theresult isan array of char or a pointer to char, the string
pointed at is displayed until aterminating NUL character is reached.
There are no double quotes around the string, but control characters
are mapped into their symbolic C representation.

Example 1

To print the program variablet ab[i] :

ZAP> ness “tab[%d] = %\n” i,tab[i]

the following is output to the command window:
tab[2] = 0x10

Example 2

To print avariables and it's address on two separate lines:

ZAP> nmess “varl1=%l \n &var 1=%\n" varl, &arl

the following is output to the command window:
varl=3
& var1=0x60

See Also

fwrite

Page 6-50
© Copyright 1999 by COSMIC Software

ZAP Commands - mm

mm

Description
Modify memory at address.
Syntax

mm [/ <options>] <address> <val ue>

Function

The mm command modifies the memory at <address> by storing
<value> init. <address> must beavalid addressin writable
memory (RAM) and <value> must be an absoluteexpressioni.e. a
number. This command displays the old and new value at the
specified address.

b | Maodify one byteat address (default).
W Modify one word (2 bytes) at address.

I Modify one long word (4 bytes) at address.

Example
To modify one byte of memory at 0x100 with the value of 3:

ZAP>mm /b 0x100 3

or

ZAP>mm 0x100 3

To modify one word at address 0x100 with the val ue 0x200:

ZAP>nm /w 0x100 0x200

Page 6-51
© Copyright 1999 by COSMIC Software

ZAP Commands - monit

monit

Description

Monitor an expression

Syntax

nmonit /[options][<expression>]*

Function

The monit command instructs the debugger to start monitoring the
value(s) specified by <expression>. When you specify several
expressions, they must be separated by commas.

Monitoring consists of displaying the updated value of the specified
expression every time the debugger prompts for more input. The
expression is displayed only when in scope.

To stop monitoring, use thedel /m command, giving it the number of
the monitor.

By default, pointers and addresses are displayed in hexadecimal,
while signed or unsigned types are displayed in decimal.

You can force a specific display format by using one of the following
extensions:

Options
/d | force signed decimal output.
/u force unsigned decimal outpuit.

Ix force hexadecimal output. The valueis prefixed by “0x”.

Page 6-52
© Copyright 1999 by COSMIC Software

ZAP Commands - monit

/o force octal output. The value is prefixed by “0”.

Ic force character output. The result is displayed as a character
between simple quotes. If it isa control character, it isreplaced by its
symbolic C representation

Is force string output. If the expression evaluates as a character
pointer or an array of characters, the pointed string is displayed
between double quotes. Control characters are replaced by their
symbolic C representation.

If you specify an already existing monitor, the new specification will
be used to update the display format.
Example

To monitor variable ac, type:

ZAP>npnit ac

thiswill cause the following result to be displayed in the monitor
window:

(1) ac =3 to be displayed.

To monitor ac in hexadecimal:

ZAP>nponit /x ac

thiswill cause the following result to be displayed in the monitor
window:

(1) ac=0x3

To monitor variablesi andj , type:

ZAP> monit i

Page 6-53
© Copyright 1999 by COSMIC Software

ZAP Commands - monit

followed by:

or more simply:

To remove the second variable in the monitor window type:

Alias- m

The m command is an alias for monit.

Page 6-54
© Copyright 1999 by COSMIC Software

ZAP Commands - move

move

Description

Movein stack frame

Syntax

i <direction>[<address> |

Function

The move command changes the scope of the C source you are
inspecting in increments of “stack frames”. Move followed by a
direction option moves the window up or down one or more stack
frames in the direction you specify. Stack frames are the regions of
storage that the compiler allocates and deall ocates from the region of
storage known as the “stack.” A stack frame holds the calling
environment of the expression that called the executing function, the
argument data objects passed on the function call, and al of the data
objects declared within the function that have dynamic lifetimes. You
direct movement of the scope by specifying:

Options
u to move up one stack frame,
d to movedown one stack frame,
t to moveto the top stack frame,

b to move to the bottom stack frame.

Page 6-55
© Copyright 1999 by COSMIC Software

ZAP Commands - The function main is usually at the top of the stack. If you specify
an address <address>, ZAP moves the window as many frames as necessary to get to

The function main is usually at thetop of the stack. If you specify an
address <address>, ZAP moves the window as many frames as nec-
essary to get to astack framethat isin scope for that address.

Page 6-56
© Copyright 1999 by COSMIC Software

ZAP Commands - output

output

Description

Capture ZAP command window output.

Syntax

out put <fil ename>

Function

The “output” command is used to capture all command responses
from ZAP. To close an output file smply type“output” on aline by
itself. By default, ZAP opens a new file each time the output
command is used with a <filename> and overwrites any previousfile
of thesamename. Only one output file can be open at any onetime.
If a second output command is issued while another fileis open the
first fileis closed and the second file is opened and starts capturing
output.

This command is useful for saving debugger output in afile for
inspection or for comparing it with the results of a previous session.

The “output” redirection stops when the command ‘output’ is entered
without an argument. The “escape” key does not stop output
redirection.

Options

la Append to the output file.

Output is always echoed onto the screen, and only the results of
commands displayed in the command window and the output file.

Page 6-57
© Copyright 1999 by COSMIC Software

ZAP Commands - output

Example

To save the output of the debugger in fileres. out :

ZAP> out put res. out

See Also

input, record

Page 6-58
© Copyright 1999 by COSMIC Software

ZAP Commands - ostep

ostep

Description

Execute one or more source lines and step over function calls.

Syntax

ostep <condition>]

Function

The ostep command controls how many source lines of your program
ZAP executes. By default, ostep executes one source line of code and
steps over asourcelineif it's afunction call.

The <condition> associated to the ‘ostep’ command can take various
forms: it can be a <count>, a specified file, arange of linesin a
specified file, a specified function, or arange of linesin a specified
function. It isthen possible to instruct the debugger to step through
the program until a specified line is reached.

If you specify anumber for the <condition>, ZAP will execute the
specified number of source lines, but will not trace into functions. If
you specify alocation for the <condition>, ZAP will execute one
source line at atime until it reaches the location. All open windows
will be refreshed after every single step.

While executing source lines the source window is always open and
the current source lineis highlighted with a‘>’ character at its|eft.

Example

To single step 10 source linesin the current function without entering

Page 6-59
© Copyright 1999 by COSMIC Software

ZAP Commands - ostep

any called functions:

ZAP>0st ep 10

To step one sourceline at atimein the current function without
entering any called functions until you reach line 45 of put() which is
assumed to be the current function.

ZAP>ost ep put(): 45

Alias- 0

Page 6-60
© Copyright 1999 by COSMIC Software

ZAP Commands - path

path

Description

Set the search path for ZAP to locate application source files for
display.

Description

The path command is used to set the search path for ZAP application
files.

path <PATH1| PATH2>

The path sets and displaysthe current search path that ZAP will use
to locate application source files. To display the current path simply
type path.

Example

To set the search path to “c:\source”, type:

ZAP>path “c:\source”

ZAP will now search only “c:\source” to find application sourcefiles.

To set the search path for ZAP to search “ c:\source” and then search
“c:\work”, type:

ZAP>path “c:\source| c”\ work”

ZAP will now search “c:\source” first and then if it doesn’t find the
fileit will search c:\work.

Page 6-61
© Copyright 1999 by COSMIC Software

ZAP Commands - print

print

Description
Print object

Syntax

print <object>

Function

The p command prints an object which can be either afile or function
or a specified number of linesin afile or function.

Options

a Display address and disassembly with the source code.

Example

To print all of crtsi.s with addresses and disassembly

ZAP>print /a crtsi.s:

To print function main()

ZAP>print /a main():

To print lines 30 to 45 in file main.c with addresses and disassembly

ZAP>print /a nmain.c:30:45

Page 6-62
© Copyright 1999 by COSMIC Software

ZAP Commands - quit

quit

Description
Quit the debugger

Syntax

qui t

Function

To end adebugging session without stepping through to program
termination, simply enter quit.

quit terminates program execution and exits to the host environment
immediately.

Page 6-63
© Copyright 1999 by COSMIC Software

ZAP Commands - record

record

Description

Record al ZAP commandsto afile for playback.

Syntax

record <filename>

Function

Therecord command saves all commands entered in the command
window or created via the mouse. The resultant record file can then
be used as input to the command window to replay a previous
debugging session. Type the “record” command, followed by alegal
filename<fil ename>. Therecord command continues to record to
the same file until arecord command is issued without a filename.
The “escape” has no effect on therecord command.

NOTE
Not all mouse actions can translated to command line input
therefore some actions may not be recorded.

Example

To record ZAP commands to the file “test.rec”:

ZAP> record test.rec

When you want to stop recording and close the record file “test.rec”

Page 6-64
© Copyright 1999 by COSMIC Software

ZAP Commands - record

just type record by itself in the command window:

ZAP> record

After therecord file is closed you can replay the recorded commands
it by using the record file as input to the command window:

ZAP> input test.rec

See Also

input, output

Page 6-65
© Copyright 1999 by COSMIC Software

ZAP Commands - regs

regs

Description

Dump processor registers to the command window and/or output file.

Syntax

regs

Function

‘regs’ isused to capture the processor registersto afile or view them
on the screen. Theregister dump from the regs command is automat-
ically captured by an output file if one has been opened by the
“output” command. Theregister dump is always echoed to the
command window.

Page 6-66
© Copyright 1999 by COSMIC Software

ZAP Commands - rem

rem
Description
Comment
Syntax
Function

rem allows you to write acomment, mainly in acommand file or a
function. The content of the remaining text up to the end of lineis
ignored by the debugger.

Example

In acommand file:

Alias-*

Comments may be created with either the asterisks or the command
rem.

Page 6-67
© Copyright 1999 by COSMIC Software

ZAP Commands - remove

remove

Description

Remove afile from the ZAP command window or input file.

Syntax

remove <fil ename>

Function

The remove command del etes the specified file from your system.
Type the “remove” command, followed by a <filename> including
the full path. Thelocal path for <fi | enane> isthe ZAP executable
directory.

Page 6-68
© Copyright 1999 by COSMIC Software

ZAP Commands - reset

reset
Description
Reset the processor and set the PC to thereset vector address.
Syntax
reset
Function

Thereset command will perform aprocessor reset. ZAP will save al
breakpoints and monitors during areset. In simulation, all CPU
registers are set to the appropriate reset values and the reset vector
address is loaded into the $PC. In hardware versions of ZAP, the
emulator or processor itself isreset so al reset conditions are
generated through the hardware.

Example

To reset the processor:

ZAP>zbm

See Also

Z€ero

Page 6-69
© Copyright 1999 by COSMIC Software

ZAP Commands - rewind

rewind

Description

Rewinds the specified channel. This command resets the file pointer
in the file associated with the channel causing the next fread (after a
rewind on the same channel) to start reading from the beginning of
thefile.

Syntax

rewi nd /c:<nunber>

Function

Therewind command is used to force the fread function to read from
the beginning of an open file. By default, fread will increment it' sfile
pointer each time it is executed with the same open file. The rewind
command is equivalent to an fclose and an fopen of the samefileand
channel.

Example

To rewind channel 1, which corresponds to thefile “foo.txt”:

ZAP> rewind /c:1

This sets the file pointer back to the beginning of the file so that the
next fread of this channel will get datafrom the start of thefile.

See Also

fopen, fclose, fread, fwrite

Page 6-70
© Copyright 1999 by COSMIC Software

ZAP Commands - session

sSession

Description

Load or Save a session to afile.

Syntax

session /{<options>] <filenane>

Function

The session command loads or saves a ZAP session from/to
<filename>. A session contains the search path for source file, the
last file loaded, the type of windows (cascade, tile or free) and the
following windows if open:

Command window - saves/|oads size and location of the window
Register window - saves/loads size and location of the window
Source window - saves/loads size and location of the window
Disassembly Window - saves/|oads size and |location of the window
Stack Window - saves/loads size and location of the window

Monitor Window - saves/|oads the size, location and contents of the
window.

Data Window - saves/loads the size, location and starting address of
the window.

Options
/l Load aZAP session.

Is SaveaZAP session (default).

Page 6-71
© Copyright 1999 by COSMIC Software

ZAP Commands - session

Example

To save aZAP session:

ZAP>session /s projectl.ssn

See Also

record

Page 6-72
© Copyright 1999 by COSMIC Software

ZAP Commands - stack

stack

Description

List known stack frames

Syntax

st ack

Function

The stack command displays a complete list of known stack frames
from the current stack frame to the top stack frame (usually your
program’s “main” routine). Function arguments are displayed inside
the function braces.

Example

To display the current stack frame:

ZAP> st ack

The following is output to the command window:

main()
foo(12,34)
bar(50,30)

Page 6-73
© Copyright 1999 by COSMIC Software

ZAP Commands - step

step

Description

Execute one or more source lines

Syntax

step <condition>]

Function

The step command controls how many source lines of your program
ZAP executes. By default, step executes one source line of code.

The <condition> associated to the ‘step’ command can take various
forms: it can be a<count>, a specified file, arange of linesin a
specified file, a specified function, or arange of linesin a specified
function. It is then possible to instruct the debugger to step through
the program until a specified line is reached.

If you specify anumber for the <condition>, ZAP will execute the
specified number of sourcelines. If you specify alocation for the
<condition>, ZAP will execute one source line at atime until it
reaches the location. All open windows will be refreshed after every
single step.

While executing source lines the source window is always open and
the current source line is highlighted with a‘>’ character at its left.

Example

To single step 10 source lines:

ZAP>step 10

Page 6-74
© Copyright 1999 by COSMIC Software

ZAP Commands - step

To step one source line at atime until you reach function lenstr()

To step one source line at atime until you reach any lineinfile main.c

To step one source line at atime until you reach line 45 of put()

Alias- s

The scommand is an alias for step.

Page 6-75
© Copyright 1999 by COSMIC Software

ZAP Commands - update

update

Description
Update a data object

Syntax

update [/<options>] <vari abl e>[=] <val ue>
update [/<options>] <vari abl e>[=] <const _expressi on>

Function

The update command updates a data object <variable> by storing a
new value <value> init. <variable> isan expression providing an
updatablelocation, such asa C language LVALUE, and <value> isan
expression whose result will be copied into the described |ocation.
This command displays the old and new value associated with the
location descriptor. Y ou can enter afull expression that will be
evaluated. Theresult will be transferred into the updatabl e |ocation.

The ‘=" sign is only mandatory when the <value> starts with an
unary operator; for example when <value> is +1 or -2.

If <argument> isan array of char, or apointer to char, itispossibleto
set the string pointed at by the following syntax:

update <argument> <string>

where <string> is either a string constant written between two double
quotes, i.e. “hello”. The character string followsthe samerulesasaC
character string, except for the terminating NUL. You can use
symbolic representation for control characters (escape sequences).
Thestring is not terminated by aNUL character. If you want to do so,
you have to specify it explicitly by a\O.

Page 6-76
© Copyright 1999 by COSMIC Software

ZAP Commands - update

Example

To update an integer:

(@]

r

unsigned inti 2 =>3
To update an integer with a negativevalue:

o

r

This command copies the string “abc” with aterminating Nul
character to terminate the string.

Alias-u
The u command is an alias for update.

Page 6-77
© Copyright 1999 by COSMIC Software

ZAP Commands - vars

vars

Description

Open aglobal variable browser window.

Syntax

vars [<options>]

Function

The var s command is used to open a dynamic variable browser
window. This command is equivalent to selecting
“Browse->Variables->in global list” from the pull down menu. Each
command will open anew window.

Options

la | Display address of variables in thewindow. The/v and the/a
option together are equivalent to the “browse ->variables->format-
>full” pull down menu item.

Iv_| Display the variables value in thewindow. The/v optionis
equivalent to “ browse -variabl es->format->standard” pull down menu
items.

See Also

monit

Page 6-78
© Copyright 1999 by COSMIC Software

ZAP Commands - watch

watch

Description

Set, modify or display awatch point event. A watch point isthe same
as abreak point except that when the break condition is met and the
action has completed ZAP will silently continue execution. Watch
points are used for events where only the execution of the actionis
desired.

Syntax

wat ch [/ <options>] [<address_range>][{<action}]

Function

The watch command sets or displays the “watch point” at
<address range>.

A watch point is an event that causes execution of your program to be
interrupted so an <action> can be performed. Y ou can set a break-
point on any C source line. Program execution will be temporarily
interrupted when control passes to that line.

A watch can also be set on arange of linesrather than on asingleline.
Ranges of lines are specified using the*:’ character. For example if
you want to set awatch point on lines 20 to 35 of function main() you
would type: wat ch mai n(): 20: 35. Typing for example wat ch

mai n() : 34 sets awatch point on line 34 of main() only.

Options
la | Reactivate a suspended watch point

le:<count> can be used to specify an optional count, which
specifies the number of times the watch point must be reached before

Page 6-79
© Copyright 1999 by COSMIC Software

ZAP Commands - watch

the action is performed. It isthen possible for example to set a watch
point when a particular C line has been executed a specific number of
times.

Is | Suspend an active watch point

<action> can be any ZAP valid command or set of commands. The
default <action> isto enter debug mode and prompt you for
command input.

The display of awatch point includes various information: first the
watch point number between parenthesis, this number will be used to
delete the watch point, then the <argument> associated with the
watch point, second between {} the action associated with the watch
point, third either (user) to indicate that the watch point has been set
by the user or (internal) to indicate that the watch point has been set
by ZAP itself for performing its work; and then the count associated
with the watch point and the number of times left before the watch
point will be taken.

To suspend awatch point, use the/s option. The watch point isstill
set, but is not active.

To reactivate a suspended watch point, usethe/a option.

To set awatch point on the third execution of line 13 inthefile main.c
and perform an <action> then continue execution.:

ZAP>wat ch /c:3 main():13 {<acti on>}

The debugger will display:
(xxX) main.c:13 {<action>} (user) (count=3, left=3) (on)

To attach the <action> below action to the above watch point which
will change the value of foo to 5 on the third time line 13 of main.cis
executed and then ZAp will continue execution.

Example action:

Page 6-80
© Copyright 1999 by COSMIC Software

ZAP Commands - watch

<action > =“updatetemp 5"

The debugger will display:

(xx) main.c:13 {updatefoo5} (user) (count=3, left=3) (on)
To list al the events currently set:

Page 6-81
© Copyright 1999 by COSMIC Software

ZAP Commands - wregs

Wr egs

Description

Toggle the register window

Syntax

wWr egs

Function

‘wregs isused to open and close the register window. The register
window when open, will be updated every time the debugger prompts
for anew command, or when you are stepping through your program.
Theregister display includes al registers of the target processor. You
can double click on any register name or value in the register window
to change the value.

See Also
regs

Page 6-82
© Copyright 1999 by COSMIC Software

ZAP Commands - write

Write

Description

Write components to afile

Syntax

wite /{<options>] <filenane>

Function

Thewrite command writes afile <filename> containing user defined
components of ZAP. Theresult is atext file that you can display or
edit as you would any text file on your host system. This file may be
reloaded using the input redirection command of ZAP.

Options allow you to save selectively breakpoints, monitors, user
functions and function keys:

/e | Saveall user events.

/m| Save monitors.

If no option is specified, all components are saved.

The “write” command opens and overwrites the named file each time
itisused. So do not create afilethat has the same name as another
filein your current working directory.

Example

To save the breakpoints only to the file savl:

ZAP>write /e savl

Page 6-83
© Copyright 1999 by COSMIC Software

ZAP Commands - write

See Also

input, output

Page 6-84
© Copyright 1999 by COSMIC Software

ZAP Commands - wstack

wstack

Description

Toggle stack frame window

Syntax

wst ack

Function

wstack is used to open and close the stack window. When the stack
window is open it is updated when execution stops.

Page 6-85
© Copyright 1999 by COSMIC Software

ZAP Commands

Zero

Description
Zero out al events, monitors or issue a processor reset.

Syntax

zero /[<options>]

Function

zer o will reset the debugger and restart the execution of the appli-
cation from the same entry point as in the original loading. The
program counter is moved to the entry point, leaving all other
registers, including the stack pointer, unchanged.

Options

le Zero (delete) all eventsincluding breakpoints and watch
points.

Im Zero (delete) all monitored variables from the monitor
Window.

Ir Reset the processor

Example

To remove all breakpoints, all monitors and reset the processor.:

ZAP>zero /e Im/r

See Also
reset, del

Page 6-86
© Copyright 1999 by COSMIC Software

| ndex

| ndex disassembly 3-21

Browser 3-16
Browser Menu 3-16
Build 2-16

A Button Bar 2-3

About ZAP 2-14
Accessing the target C
processor’ sregisters 1-7

Action Box 3-13 C Syntax 2-17
Address of SourceLines 4-3 Call Editor 2-15
Any Source 3-21 chronogram 1-5
Application Map 2-14 Chronology 1-5
automate debugging sessons Code Event Editor 3-12
1-6 Code Events 3-8
Colors 2-7
B Command
* 6-12
breakpoint 6-14 command syntax 6-8
Breakpoint Editor 3-9, 3-12 ~ Command Window 1-2, 2-4
Breakpoints 3-8 Commands
Browse Headers 3-21 activ 6-13
Browse Memory break 6-14
Code 3-21 deact 6-18
Data 3-21 disa 6-21

Index-1

dump 6-22
eval 6-24
fclose 6-30
files 6-27
fill 6-28
fopen 6-32
frame 6-40

fread 6-34, 6-37

funcs 6-41
go 6-43

if 6-44
input 6-45
istep 6-46
load 6-48
mess 6-49
monit 6-52
move 6-55
ostep 6-59
output 6-56
path 6-61
print 6-62
quit 6-63
record 6-64
regs 6-66
rem 6-67
remove 6-68
reset 6-69
rewind 6-70
session 6-71
stack 6-73
step 6-74

update 6-51, 6-76

Index-2

vars 6-78
watch 6-79
wregs 6-82
write 6-83
wstack 6-85
zero 6-86
Compile 2-15
Compile Debug 2-15
Configure Tools 2-15
Cross Reference Browser 3-23

D

Data 4-7

Data Objects 6-5
DataWindow 1-2, 2-4

del 3-11, 6-19

Deleting Breakpoints 3-11
Disassembling Memory 4-7
Disassembly Window 1-2, 2-4
DOS Shell 2-16

Drag and Drop 4-2

E

Edit Current File 2-15
Editor 2-15
Evaluating Assembly Symbols
4-11
event

code breakpoint 6-14
Event Browser 3-17

Events 3-8 In Global List 3-22
Exit 2-14

K
F

Kernel Browser 3-23
FileMenu 2-13
Fonts 2-8 L

Function Browser 3-19
Load Layout 2-14

G Load Session 2-14
g 33, 3-5, 39
Go 3-2 M
Go Editor 3-2 Map 3-25
Go from Reset 3-7 Mnemonics 2-8
Go Till 3-2 Monitor 4-2
Go Till Source Line Shortcut Monitor Window 1-3, 2-4, 4-
3-2 2
Monitors 4-2
H Monitors Window 4-2
Helpon C Libary 2-17 0
Help on C Syntax 2-17
Help on Using ZAP 2-17 O 6-86
High Level Commands On-line Help Facility 2-17
0 6-61 ostep 6-59
| P
In Current File 3-22 Path Editor 2-10
In Current Function 3-22 Pointer Indirection 6-6

Index-3

PROM 1-4

R

Register Manipulation 6-3
Registers 1-2, 2-5

Reset 3-7

Restart 3-7

S

s 3-5
Save Config 2-11
Save Config On Exit 2-6
Save Config on Exit 2-11
Save Layout 2-14
Saving aMemory Dump 4-10
Screen Display 2-6
Setting/Editing Breakpoints 3-
9
Setup Menu 2-7

Load Option 2-7
s 3-6, 6-46
Simulated 1/0 5-2
Single Stepping 3-4
so 3-6
Source Browser 3-17
Source Window 1-2, 2-3
S-Record 4-10
Stack Frame 4-13
Stack Window 1-2, 2-5, 4-13
Start and Stop Execution 3-2

Index-4

Status Bar 2-5

Step 3-4

step 6-74

Step Over 3-4

Step PC 3-4

Syntax Coloring 2-3, 2-8

T
Toolbar 1-3, 2-13

U

Update 4-4
Utilities 2-15

Vv

Variable Browsar 3-22
Variable Window 1-3, 2-5

w

Watchpoint 3-8
Windows Menu 2-6
Cascade 2-6
Free 2-6
Horizontal Tile 2-6
Vertical Tile 2-6

	Table of Contents
	Overview
	ZAP Display Windows
	ZAP Debugging Features
	Non-intrusive Debugging
	Source Browsing
	Graphical Performance Analysis
	C and Assembly Trace
	Time Line Chronograms
	Chromacoding
	Breakpoints
	Expression Evaluation
	Single Stepping C and Assembly
	Automated Debugging Sessions
	On-line Help Facility
	Comprehensive Debugger Command Set

	ZAP Configurations
	Simulator Configuration
	Monitor Configuration
	Background Debug Mode Configuration
	In-Circuit Emulator Configuration

	Using ZAP
	Starting ZAP
	ZAP Windows
	Source Window
	Toolbar
	Command Window
	Disassembly Window
	Memory Window
	Monitors Window
	Register Window
	Stack Window
	Status Bar
	Variable Window

	Screen Display Options
	Windows Menu
	Setup Menu

	Loading an Application
	File Menu
	Load
	Application Map
	Load and Save Layout
	Load and Save Session
	About ZAP
	Exit

	Utilities Menu
	Configure Tools

	On-line Help Facility
	Help on Using ZAP
	Help on C Library
	Help on C Syntax

	Program Execution
	Start and Stop Execution
	Normal Execution
	Stop execution

	Single Stepping
	Reset and Restart
	Reset
	Go from Reset
	Restart

	Events and Breakpoints
	Code Events
	Watchpoint
	Breakpoints
	Setting/Editing Breakpoints
	Deactivating/Activating Breakpoints
	Deleting Breakpoints
	Code Event Editor
	Displaying and Editing Breakpoints

	Activate and Deactivate Functions
	Browser Menu
	Event Browser
	Source Browser
	Memory Browser
	Variable Browser
	Cross Reference Browser
	Symbol List Browser (sorted)
	Symbol Browser
	Map

	Monitoring Application Data
	Monitoring Variables and Expressions
	Monitors Window
	Address of Source Lines

	Updating Variables
	Evaluating Expressions
	Evaluate Expression

	Displaying and Updating Memory
	Disassembling Memory
	Displaying Memory
	Updating Memory
	Fill Memory
	Saving a Memory Dump to a file
	Saving Memory Dump as S-Record format.
	Display Highlights

	Evaluating Assembly Symbols
	Displaying and Updating Registers
	Displaying the Stack Frame

	Advanced Topics
	Simulated I/O

	ZAP Commands
	Command Line Syntax
	Specifying Memory Locations and Registers
	Constants and Expressions
	Register Manipulation
	User defined variables
	Source files and Functions.
	Data Objects
	Pointer Indirection

	Entering ZAP Commands
	Command Descriptions
	ZAP Commands
	*
	activ
	break
	deact
	del
	disa
	dump
	eval
	files
	fill
	fclose
	fopen
	fread
	fwrite
	frame
	funcs
	go
	if
	input
	istep
	load
	mess
	mm
	monit
	move
	The function main is usually at the top of the stack. If you specify an address <address>, ZAP mo...
	output
	ostep
	path
	print
	quit
	record
	regs
	rem
	remove
	reset
	rewind
	session
	stack
	step
	update
	vars
	watch
	wregs
	write
	wstack
	zero

	Index

