4 N

OSMIC Verson42

C Cross Compiler User’s Guide
for Motorola MC68HCO05

Copyright © COSMIC Softwar e 1995, 2003
All Trademarks arethe property of their respective owners

\ /

Table of Contents

Chapter 1

[BraCketS] .ovoveeevireereiererreree e
Conventions..................
Command Line

LinKiNg.....coeuereereeeeree e
Programming Support Utilities
[IE (] 0o

OPtIMIZALONS.....cveveeieireeieriie e
Support for ROMable Code.........cccovreereerinreneeee s
SUPPOIt FOF EEPIOM ... e

Chapter 2
Tutorial Introduction
Acia.c, Examplefile......cccocoveennnene.
Default Compiler Operation........
Compiling and Linking
Step 1: Compiling.........
Step 2: Assembler.........
Step 3: LinKing ...cvovveereeverreerecneneeins
Step 4: Generating S-Recordsfile........occovrvrevinicccnieen
Linking Your AppliCation.........ccoeeererneeieneneneee e
Optimize Function Call
Generating Automatic Data Initialization
Specifying Command Line OptionsScccoeevrereeerenenereenenns

Chapter 3

Programming Environments

INEFOAUCEION. ...t 30
Modifying the Runtime Startupccocoveenrereienrrecnennenes 31

(i)

Description of Runtime Startup Code..........ccoceveeerenerucne. 32
Initializing datain RAM ..o
Bit Variables.......ooevvrrrrr s
The const and volatile Type Qudlifiers....
Performing Input/Output in C.................
Referencing Absolute Addresses.....
Accessing Internal REQISLENSccooviirrenenecereeeee s
Placing Data Objectsin The Bss Section
Placing Data Objectsin Internal Memory

Setting Zero Page SIZec.oovvvvevenereceeenneeeeeseece e
Placing Data Objectsin External Memoryccccceeoereeenenne 41
Placing Data Objectsin the EEPROM Space.........ccccceevveeeene 42
Redefining SECLIONS.......ccoiieirieire e
Local Variables and Arguments
Inserting Inline Assembly Instructions...........ccccoevvevveneceneee. 46

INliNING With Pragmas...........coocvreeerenneeennseeeses s

Inlining with _asm.................

Inlining Labels........cccoceeeeneee
Writing Interrupt Handlers
Placing Addressesin Interrupt VECtOrs.......coceeveeveevveneenesenne 50
Function Call Optimizationccccceeiiveeiveneseseeisecese e
INling FUNCLION.........cveriieceerccee
Interfacing C to Assembly Language
Register Usage.....cooveverenenenneneesieen
Data REpresentation..........c.cocveeiereeenieeseese e

Chapter 4

Invoking the Compiler........oveveivieciciecceee e

Compiler Command Line Options...
File Naming Conventions.............cc.c.....
Generating LiStiNgS.....cccceoererereeesereseseese e
Generating an Error File.......ccoooiiiincinieeeeeeee
Generating Jump Table
RELUrN SEBLUS......ccoovcviiiiiic s

Inserting Assembler Code Directly

Linking Libraries with Your Program..........ccccceeevverveunnnn. 67
Integer Library FUNCLIONS........ccccovveviviiniiiieiceceeecieeeea 68
Common Input/Output FUNCLIONS..........cccevreereinerieecees 68

Functions Implemented as Macros..........cccooeeeenerenieneeeenn 68
Including Header FileS.......cccoovveiveiieieeseeseee e
Usage of External Memory Pointers,
Descriptions of C Library Functions
Generate inline assembly code.......
Abort program execution.............
Find absolute ValUue............ccoeoiireienineeree e
ATCCOSINE. ...ttt
Arcsine .
ATCLBNGENT ...t
ATCtangeNt OF /Xccueeveeeieieicereeeeeseee e
Convert buffer to double ...
Convert buffer to INtEgErcovereireerereeeeree
Convert buffer to long
Test or getthe carry bit........ccceevveivceieceeeeeee
Round to next higher iNtegercoveeerreerinneeeeseennes

Hyperbolic cosine.........ccoccovinninnnene
Divide with quotient and remainder ...
Erase the full egprom space.........cccovvevveeiivieeseeseeeenns 86
EXit program eXeCULioNcccovveerieresieneeiseee e 87
Exponentialcoccoeevrenennee
Find double absolute value......89
Round to next lower integer
Find double ModUIUS..........ccooreinirereree e 91
Extract fraction from exponent partcccveeeeereieeennn 92
Get character from input stream
Get atext line from input Stream............ccoceveveeerreercennnns 94
Test theinterrupt mask Bit........ccocociiiiiieinieeceeee 95
Test theinterrupt linelevel ... 96
Test for aphabetic or numeric character ..o 97
Test for aphabetic character
Test for control Character ...
TESEFOr Aigit ...
Test for graphic character
Test for lowercase character
Test for printing character

Test for punctuation CharaCterccoveevevieievieiserienens
Test for whitespace charaCtercocevvveeeeereceriecesienens
Test for uppercase character
Test for hexadecimal digit........
Find long absolute Value...........ccoeeveiniennciencceeeee

(iv)

Scale double eXPONEeNt...........ccvereeereiirereneneeesee e 109
Long divide with quotient and remainderc..ccvu.. 110
Natural 1ogarithmccccooveiienice e
Common logarithm

Test for maximum..................

Scan buffer for character .
Compare two buffersfor lexical orderccoeevennennne 115
Copy one buffer to ancther
Copy one buffer to ancther .
Propagate fill character throughout bufferc........ 118
Test for MINIMUM ..o 119
Extract fraction and integer from double.............cccoccueeee 120
Raise X tO the Yy POWENcoecireeriieeeeree e
Output formatted arguments to stdout .
Put a character to OUtput Streamccceeevevieeiieieesienns
Put atext line to output Stream..........ccccoeeevereerecenenienens

Hyperbolic sine
Output arguments formatted to buffer
Real SQUArE rO0L.......c.eveeeieicieieesie et
Seed pseudo-random number generator .. .
Concatenate StriNgS........coeeeeeereeereenerereenereens ..135
Scan string for first occurrence of character
Compare two strings for lexical orderccoceeveeneecnnee 137
Copy one string to anothercccccvvevvvericereeiceeseene

Find the end of a span of charactersin aset.... .

Find length of astringcccoveeienneeinneees e

Concatenate strings of length n
Compare two n length strings for lexical order................ 142
Copy n length string
Find occurrence in string of character in set ... w“
Scan string for last occurrence of character 145
Find the end of a span of charactersnot in set 146
Scan string for first occurrence of string............ .. 147
Convert buffer to double................

Convert buffer tolong........ccccee.ee. "
Convert buffer to unsigned 1oNg.........ccveveeeveeiiciesieene 150

Chapter 5

Using The Assembler

INVOKING CAB8O5coveeeiireeenie e e 156

(S L= o 0 = 1 1= S 158

Listings.

Assembly Language SyNtaX.........cceeeereerreneeeseesseseseseesens 160
INSITUCLIONS ...

Temporary Labels
Constants..........ccceeeeeens
EXPrESSIONS......cviuiieieieieiesie sttt
MaCro INSLUCIONS......c.cvivieeiiireeieeerese e
Conditional Directives
Sections......coceveeereenieenen
Bit Handling
INCIUAES. ... e
Branch Optimization...........ccccoeveiennincecneee e
Old Syntaxcceevevevveesiennns
C Style Directives................
Assembler DIreCHIVES........coeverivireerees e
Align the next instruction on a given boundary 174
Define the default base for numerical congtants............... 175
Switch to the predefined .bsct section. ... 176
Turn listing of conditionally excluded code on or off...... 177
Allocate CONSEANL(S) ...voveverirreriererieisieesieese e
Allocate constant blocKocceevvrecinennne
Turn listing of debug directives on or off
Allocate variabl€(S)ccoeeeveeeerieierenccreees
Conditional assemblyccoccovirninnieneeeec
Conditional assemblyccoeeeviereiincieseee e
Stop the assembly
End conditional assembly
End conditional assembly
End macro definition ...
ENd repeat SECHION........c.coeeieeceieeriere e
Give apermanent valueto asymbolccccceeivveirnenenn,
Assemble next byte at the next even address relative to
the start of @aSeCtion.ccceeveevecreee e 190
GENerate eror MESSAGE.ceueeueeereereereeseeseesseseessessessenneas 191
Conditional assembly
Conditional assembly
Conditional assembly

(vi)

Conditional assembly ... 195

Conditional assemblycccceviveieniiineeseeeeea 196
Conditional assemblyccccceveveieneireeseseeeee 197
Conditional assemblycccovreeiirnereeeene 198
Conditional assembly ..o 199
Conditional assembly ... 200
Conditional assembly ... 201
Conditional assemblyccccccviveiinciiieecece e 202
Include text from another text file........ccoovveeniicicnee 203
Give atext equivalent to asymbolccccveeenneeiennns 204
Turn on listing during assembly...........cccveirernieieneneenn 205
Create anew local blocKccoeeiinnennicnnceeee e 206
DefiN@ @MACIOcveuireiicii e 207
Send amessage out to STDOUTccvveeevereeinieiesieenes 209
Terminate a macro definitionccovvveerneeenneeenes 210
Turn on or off listing of macro expansion.............c.cev.... 211
Turn Off liStiNG. «veoeee e 212
Disable pagination in the listing fileccccoceoiiininens 213
Creates absolute symbols..........ccooiinciniinceeee 214
Sets the location counter to an offset from the beginning

Of @SECHON.....veiiieiee e 215
Start anew pageinthelisting file........cccoveeinniiinnnns 216
Specify the number of lines per pagesin thelisting file.. 217
Repeat alist of linesanumber of times..........cc.ccccveinee 218
Repeat alist of linesanumber of times..........cc.ccccvevenene 219
Restore saved SECHIONc.cvievieieerriereesree e 221
Terminate arepeat AefiNitionccoeeeeeveevccciescciee, 222
SAVE SECHON ...t 223
Define anew SECtIONccooveireeere e 224
Give aresetable value to asymbolccoceereieienccnes 226
Insert a number of blank lines before the next statement

inthelisting file........ccccooveiieiiecc e 227
Place code into @SeCtioN.ccveeevrirveienrineceseeeeeee 228
Specify the number of spaces for atab character in the

[ISENG FIl.eeei e 229
Define default header ... 230
Declare bit symbol as being defined elsewhere................ 231
Declare avariableto bevisible..........cccooviiiicnnnee 232
Declare symbal as being defined elsewhere..................... 233

Chapter 6

Using The Linker

INEFOUCTION.....ce e 237
OVEIVIBIW. ...ttt et 238
Linker Command File Processing..........cccovveveeeeiresieeencreneenenes 240
Inserting comments in Linker commands .. 241
Linker OptioNS.......ccvueveeieririeereneeee e .. 242

Global Command Line Options..........ccccoeeeevreeennne ...243

. 247

.. 248

.. 248

... 248

... 249

249

Symbol Definition Option..........coeeervreeerreeeerrerenenes 250

Reserve Space Option ... 252

Section REIOCATON ... 252

Address ArithmetiC........ccovvvnnnnrn e 253
Overlapping Control
Setting Bias and OffSat ...
Setting the BiaS.....c..ovevvvreieecerre s
Setting the Offset

Using Default Placement..........ccovvveeeennenecneneseenenenes 254

Bit Segment Handlingcccoveenirnieeiennecenneeeens 254
Linking Objects

Linking Library ObJeCtS.........cccovrreennnreinneeecereeeeeseneeeeees 255

Library Order ..o 256

Automatic Data Initialization...........cccoeeeveeeeeecrenenen. ..257

.. 257

DesCriptor FOrMat..........oceeererieieirenieicenereeieesesneiene .
Shared Data Handling258
DEFsand REFS........c.ccccvnieueneniienns ...259

Specia Topics260
Private Name RegioNS.cooevrererrererenenreenenennenens260

Renaming Symbols.........c.cccc.......260
Absolute Symbol Tables.264
Description of The Map File. ... 265
REtUMN VAlUE.......oooii e 266

Linker Command Line EXamples.........ccocovrevvnenrcnnennnnenenes 266

(vii)

(viii)

Chapter 7

Debugging Support
Generating Debugging Information............coeeveereeereneneenns 270
Generating Line Number Information.............ccccvvevnenns 270
Generating Data Object Information.............ccceeveeevnenne 270
The cprd ULHITY ..o 272
Command Ling OPtioNScccverveeeererieeererieenisesieeenens 272
EXAMPIES ... 273
THhE ClSE ULHTLY .o 274
Command Line OPLtioNSccverrerrrererrerererenreeenesrereenens 274
Chapter 8
The cheX ULIItY ...
Command Line Options
Return Status............coeveeviinnene,
Examples..........
The clabs Utility
Command Line Options

Return Status

The eVB95 ULHILYcoeeeeceiererrc s
Command Line Options
RELUIN SEALUS ...

Chapter A
Compiler Error Messages
Parser (cp6805) Error MESSagES.........curervrueuenirerieieneresierenenens 296

Code Generator (cg6805) Error MeSsages.........ccovevreererueennes 310
Assembler (cab805) Error MeSSages........ccvvvvveerresieesvereenenns 311
Linker (clnk) Error MESSAQES........cceivvueieieneeririenieieseeesieeenens 314

Chapter B
Modifying Compiler Operation

Chapter C

MC68HCO05 Machine Library
Update a char bitfield in extended memorycccccceeuee 323
Update an int bitfield in extended memoryc......... 324
Call anindirect fuNCtioNccoeereeieerne e 325
Call anindirect fuNCLioNccoeereeeinenneee e 326
Quoatient of unsigned integer divisioncccccceveeverenenn 327
Copy astructure into anotherccveeeveveeereieseiceees 328
Eeprom bit field update.........cooeevirieiinneceseeee
Write achar int in @epromcoccoverriienneneeeceeeeens
Write along int in €eProm.........c.ccoveenineeeneieseceeeeeens
Write ashort int in eeprom
Move a Structure in €eProM........ccceeevreeeereeeseereseseeresens 333
Add float tO flOatcoeveverercie s 334
ComMPAre flOALS........coveveveerreereeere s 335
Divide float by flOat..........coooeeiienenieieee e 336
Add float to float in Memoryccceoeveerenneneecrcenns 337
Multiply float by float in memorycccooeveinennenenne. 338
Subtract float from float in memoryc.cooeevveveieeenenn. 339
Multiply float by fIOEtccceveieeeiiecieeeeecines
Negate afloat.......coccoevvrereericnennnn
Subtract float from float
Convert float to integer................
Convert float into long integer
Convert float to INtEGET......ccccvvveeereieeieeseieesieeens

Compare afloat in memory to zero
Load a byte from extended memory

Load along integer from extended memory 348
Load aword from extended memory

Quoatient of integer diViSioN........cccccverreneirenre e 350
Integer MUItipliCationcccoceveeevieeiieriseseesee e 351

(ix)

)

Convert integer into floatcoveieveneiencirereeeeee 352
Convert integer into 1oNg........cccovveevecvvenisiereee e 353
Perform C switch statement on 1ongccceevveevvieienns 354
Long integer additioncccccevvvveuenene

Bitwise AND for long integers.
Long integer compare..........ccccceeee.e. .
Quotient of long integer diViSionc.ccccoevvernieneeenens 358
Long addition
Long bitwise AND ...

Long shift left

Long multiplication in Memory..........ccocecveeeeieeieneeiennens 362
Negate along integer in MEMONYcccoccverrereeereeieneens 363
LoNg DItWiSE OR ..o
Signed long shift right .
LONG SUBLIACION......ceiviieiiieiceeec et
Unsigned long shift right ... 367
Long bitwise exclusive OR............ ... 368
Long integer shift left..........cccoenee. ...369
Remainder of long integer division......... ..370
Multiply long integer by long integercccccvvevveiienns 371
Negate along INtEQEN.......ccvevrerieirieieereeesee e

Bitwise OR with long integers.......
Long integer right shift..................
Long test against zero............. .
Long integer SUDLFraCtion............cceeeereneeenienene e
Convert long integer intofloatcccccveveevciccccsene,
Load memory into long register .
Quotient of unsigned long integer division..........c..ccce... 379
Remainder of unsigned long integer division................... 380
Unsigned long integer shift right.........ccccoceveieninnienncnns 381
Bitwise exclusive OR with long integers.........c.ccccveveeene 382
Compare along integer to zero .
Store abytein extended memoryccoceeeveievriesiennen 384
Store along integer in extended MEMOTY.........ccoeeenenne 385
Store aword in extended memory...............

Store long register in memory
Quotient of signed integer division .
Multiply long integer by unsigned byte...........cccccevvennene 389
Copy astructure into anothercocccveveievcicecesenen
Quotient of unsigned integer division
Convert unsigned integer into float
Convert unsigned integer into 1oNgccceoeveeerercreenes

Convert unsigned long integer into float

Convert unsigned integer into floatc.ccceeenneenee
Convert unsigned integer into 1oNgccovveevnenee
Copy astructure into anotherccoeeevereverieienine .
Convert integer into float..........cooceveerreeerrneensreeeenes
Convert integer iNto 10Ng........covvrveirrerreererrreeereseeenes
Chapter D
Compiler Passes
The CPB80S5 ParSErccovviveeiiriiieeserise et 402
Command Line OPtioNScoevrerveeeerreereinereeieeresieneees 402
Return Status
EXBMPIE....ooceiecee e
The cg6805 Code GENEIALONcvevrererrerrererrereee e 406
Command Line Options

Return Status

(xi)

Preface

he Cross Compiler User's Guide for MC68HCO5 is a reference

guide for programmers writing C programs for MC68HC05 micro-
controller environments. It provides an overview of how the cross com-
piler works, and explains how to compile, assemble, link and debug
programs. It also describes the programming support utilities included
with the cross compiler and provides tutorial and reference information
to help you configure executable images to meet specific requirements.
This manual assumes that you are familiar with your host operating sys-
tem and with your specific target environment.

Organization of this Manual
Thismanual is divided into eight chapters and four appendixes.

Chapter 1, “Introduction”, describes the basic organization of the C
compiler and programming support utilities.

Chapter 2, “Tutorial Introduction”, is a series of examples that demon-
strates how to compile, assemble and link a simple C program.

Chapter 3, “Programming Environments’, explains how to use the fea-
tures of C for MC68HCO5 to meet the requirements of your particular
application. It explains how to create a runtime startup for your applica-
tion, and how to write C routines that perform special tasks such as:
serial 1/0O, direct references to hardware addresses, interrupt handling,
and assembly language calls.

© 2003 COSMIC Software Preface 1

2

- Organization of this Manual

Chapter 4, “Using The Compiler”, describes the compiler options. This
chapter also describes the functions in the C runtime library.

Chapter 5, “Using The Assembler”, describes the MC68HCO05 assem-
bler and its options. It explains the rules that your assembly language
source must follow, and it documents all the directives supported by the
assembler.

Chapter 6, “Using The Linker”, describes the linker and its options.
This chapter describes in detail al the features of the linker and their
use.

Chapter 7, “Debugging Support”, describes the support available for
COSMIC's C source level cross debugger and for other debuggers or in-
circuit emulators.

Chapter 8, “Programming Support”, describes the programming sup-
port utilities. Examples of how to use these utilities are also included.

Appendix A, “Compiler Error Messages’, is a list of compile time
error messages that the C compiler may generate.

Appendix B, “Madifying Compiler Operation”, describes the “ configu-
ration file” that serves as default behaviour to the C compiler.

Appendix C, “MC68HC0O5 Machine Library”, describes the assembly
language routines that provide support for the C runtime library.

Appendix D, “Compiler Passes’, describes the specifics of the parser,
code generator and assembly language optimizer and the command line
options that each accepts.

This manual also contains an Index.

Preface © 2003 COSMIC Software

CHAPTER

1

| ntroduction

This chapter explains how the compiler operates. It also provides a
basic understanding of the compiler architecture. This chapter includes
the following sections;

Introduction

Document Conventions
Compiler Architecture
Predefined Symbol

Linking

Programming Support Utilities
Listings

Optimizations

Support for ROMable Code

Support for eeprom

© 2003 COSMIC Software Introduction

Introduction

Introduction

The C cross compiler targeting the MC68HCO5 microcontroller reads C
source files, assembly language source files, and object code files, and
produces an executable file. You can regquest listings that show your C
source interspersed with the assembly language code and object code
that the compiler generates. You can also request that the compiler gen-
erate an object module that contains debugging information that can be
used by COSMIC's C source level cross debugger or by other debug-
gersor in-circuit emulators.

You begin compilation by invoking the cx6805 compiler driver with the
specific options you need and the files to be compiled.

Document Conventions

In this documentation set, we use a number of styles and typefaces to
demonstrate the syntax of various commands and to show sample text
you might type at aterminal or observe in afile. The followingisalist
of these conventions.

Typewriter font
Used for user input/screen output. Typewriter (or courier) font is

used in the text and in examples to represent what you might type at a
terminal: command names, directives, switches, literal filenames, or
any other text which must be typed exactly as shown. It isalso used in
other examples to represent what you might see on a screen or in a
printed listing and to denote executables.

To distinguish it from other examples or listings, input from the user
will appear in a shaded box throughout the text. Output to the terminal
or to afile will appear in aline box.

For example, if you were instructed to type the compiler command that
generates debugging information, it would appears as:

cx6805 +debug acia.c

Typewriter font enclosed in a shaded box indicates that this line is
entered by the user at the terminal.

4 Introduction © 2003 COSMIC Software

Document Conventions

If, however, the text included a partia listing of the file acia.c ‘an
example of text from a file or from output to the termina’ then type-
writer font would still be used, but would be enclosed in aline box:

/* defines the ACIA as a structure */
struct acia {

char status;

char data;

} acia @0x6000;

NOTE

Due to the page width limitations of this manual, a single invocation line
may be represented as two or more lines. You should, however, type the
invocation as one line unless otherwise directed.

[talics
Used for value substitution. Italic type indicates categories of items for
which you must substitute appropriate values, such as arguments or
hypothetical filenames. For example, if the text was demonstrating a
hypothetical command line to compile and generate debugging infor-
mation for any file, it might appear as:

cx6805 +debug file.c

In this example, cx6805 +debug file.c isshown in typewriter font
because it must be typed exactly as shown. Because the filename must
be specified by the user, however, fileis shown in italics.

[Brackets]
Items enclosed in brackets are optional. For example, the line:

[options]

means that zero or more options may be specified because options
appears in brackets. Conversely, the line:

options

means that one or more options must be specified because optionsis not
enclosed by brackets.

© 2003 COSMIC Software Introduction

6

Document Conventions

As another example, the line:
filel.[o]ho5]

means that one file with the extension .o or .h05 may be specified,
and the line:

filel [file2 . . .]

means that additional files may be specified.

Conventions
All the compiler utilities share the same optional arguments syntax.
They are invoked by typing acommand line.

Command Line
A command lineis generally composed of three major parts:

program_name [<flags>] <files>

where <program_name> isthe name of the program to run, <flags> an
optional series of flags, and <files> a series of files. Each element of a
command line is usually a string separated by whitespace from all the
others.

Flags

J Flags are used to select options or specify parameters. Options are rec-
ognized by their first character, which isalwaysa‘-’ or a‘+’, followed
by the name of the flag (usually a single letter). Some flags are smply
yes or no indicators, but some must be followed by a value or some
additional information. The value, if required, may be a character
string, a single character, or an integer. The flags may be given in any
order, and two or more may be combined in the same argument, so long
asthe second flag can’t be mistaken for a value that goes with the previ-
ous one.

It is possible for each utility to display a list of accepted options by
specifying the -help option. Each option will be displayed a phabeti-
cally on a separate line with its name and a brief description. If an
option requires additional information, then the type of information is

Introduction © 2003 COSMIC Software

Document Conventions

indicated by one of the following code, displayed immediately after the

option name:
Code ‘ Type of information
* character string
short integer

#it long integer

? single character

If the code isimmediately followed by the character ‘>’ the option may
be specified more than once with different values. In that case, the
option name must be repeated for every specification.

For example, the options of the chex utility are:

chex [options] file
-a## absolute file start address
-b## address bias
-eftt entry point address
-2 output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-0* output file name
-p use paged address format
-pp use paged address with mapping
-pn use paged address in bank only
-s output increasing addresses
-X* exclude named segment

chex accepts the following distinct flags:

© 2003 COSMIC Software Introduction 7

Compiler Architecture

Flags ‘ Function
-a accept a long integer value
-b accept a long integer value
-e accept a long integer value
-f accept a single character
-h simply a flag indicator
+h accept a character string
-m accept a short integer value,
-n accept a character string and may be repeated
-0 accept a character string
-p simply a flag indicator
-pn simply a flag indicator
-pp simply a flag indicator
-S simply a flag indicator
-X accept a character string and may be repeated

Compiler Architecture

The C compiler consists of several programs that work together to
tranglate your C source files to executable files and listings. cx6805
controls the operation of these programs automatically, using the
options you specify, and runs the programs described below in the order
listed:

Cp6805 - the C preprocessor and language parser. cp6805 expands
directivesin your C source and parses the resulting text.

€g6805 - the code generator. cg6805 accepts the output of cp6805 and
generates assembly language statements.

06805 - the assembly language optimizer. co6805 optimizes the
assembly language code that cg6805 generates.

8 Introduction © 2003 COSMIC Software

Predefined Symbol

cab805 - the assembler. ca6805 converts the assembly language out-
put of co6805 to a rel ocatable object module.

Predefined Symbol

The COSMIC compiler definesthe CSMC__ preprocessor symbol. It
expands to a numerical value whose each hit indicates if a specific
option has been activated:

bit 2: setif unsigned char option specified (-pu)
bit 4: setif reverse bitfield option specified (+rev)
bit 5: setif no enum optimization specified (-pne)

Linking

clnk combines al the object modules that make up your program with
the appropriate modules from the C library. You can aso build your
own libraries and have the linker select files from them as well. The
linker generates an executable file which, after further processing with
the chex utility, can be downloaded and run on your target system. If
you specify debugging options when you invoke cx6805, the compiler
will generate a file that contains debugging information. You can then
use the COSMIC's debugger to debug your code.

Programming Support Utilities

Once object files are produced, you run clnk (the linker) to produce an
executable image for your target system; you can use the programming
support utilities listed below to inspect the executable.

chex - absolute hex file generator. chex translates executable images
produced by the linker into hexadecimal interchange formats, for use
with in-circuit emulators and PROM programmers. chex produces the
following formats:

- Motorola S-record format
- standard Intel hex format

clabs - absolute listing utility. clabs translates relocatable listings pro-

duced by the assembler by replacing al relocatable information by
absolute information. This utility must to be used only after the linker.

© 2003 COSMIC Software Introduction

Listings

clib - build and maintain object module libraries. clib alows you to
collect related files into a single named library file for convenient stor-
age. You useit to build and maintain object module librariesin standard
library format.

cobj - object module inspector. cobj allows you to examine standard
format executable and rel ocatabl e object files for symbol table informa-
tion and to determine their size and configuration.

ct6805 - scan al the listing files, if any, and creates as output an
assembly source file containing areplacement label followed by ajump
instruction to the target function, for each of the selected function.

Ccv695 - IEEE695 format converter. cv695 allows you to generate
|EEE695 format file. This utility must to be used only after the linker.

cvdwar f - ELF/DWARF format converter. cvdwarf allows you to con-
vert afile produced by the linker into an ELF/DWARF format file.

Listings

Several optionsfor listings are available. If you request no listings, then
error messages from the compiler are directed to your terminal, but no
additional information is provided. Each error is labelled with the C
source file name and line number where the error was detected.

If you request an assembly language and object code listing with inter-
spersed C source, the compiler merges the C source as comments
among the assembly language statements and lines of object code that it
generates. Unless you specify otherwise, the error messages are still
written to your terminal. Your listing is the listing output from the
assembler.

Optimizations

The C cross compiler performs a number of compile time and optimiza-
tions that help make your application smaller and faster:

» The compiler supports three programming models, allowing you
to generate fully optimized code for your target system.

10 Introduction © 2003 COSMIC Software

Optimizations

e The compiler usesregisters a and x to hold the first argument of a
function call if:

1) thefunction does not return a structure and
2) thefirst argument is derived from one of the following types:

char,

short,

int,,

pointer to...,
or array of....

e The compiler will perform arithmetic operations in 8-bit precision
if the operands are 8-hit.

e Thecompiler eliminates unreachable code.

» Branch shortening logic chooses the smallest possible jump/
branch instructions. Jumps to jumps and jumps over jumps are
eliminated as well.

e Integer and float constant expressions are folded at compile time.
» Redundant load and store operations are removed.

* enum islarge enough to represent all of its declared values, each
of which is given a name. The names of enum values occupy the
same space as type definitions, functions and object names. The
compiler provides the ability to declare an enum using the small-
est type char, int or long:

e The compiler performs multiplication by powers of two as faster
shift instructions.

* An optimized switch statement produces combinations of tests
and branches, jump tables for closely spaced case labels, a scan
table for a small group of loosely spaced case labels, or a sorted
table for an efficient search.

© 2003 COSMIC Software Introduction

12

Support for ROMable Code

The functions in the C library are packaged in three separate
libraries; one of them is built without floating point support. If
your application does not perform floating point calculations, you
can decrease its size and increase its runtime efficiency by linking
with the non-floating-point version of the modul es needed.

Support for ROMable Code

The compiler provides the following features to support ROMable code
production. See Chapter 3 for more information.

Referencing of absolute hardware addresses,

Control of the MC68HCOS5 interrupt system;
Automatic data initialization;

User configurable runtime startup file;

Support for mixing C and assembly language code; and

User configurable executable images suitable for direct input to a
PROM programmer or for direct downloading to atarget system.

Support for eeprom

The compiler provides the following features to support eeprom han-
dling:

@eeprom type qualifier to describe a variable as an eeprom loca
tion. The compiler generates special sequences when the variable
is modified.

Library functions for erasure, initialization and copy of eeprom
locations.

The basic routine to program an eeprom byte islocated in the library file
eeprom.s and has been written using the default input/output address
0x1000. Thisfile must be modified if using a different base address.

NOTE

Introduction

© 2003 COSMIC Software

Support for eeprom

For information on using the compiler, see Chapter 4.

For information on using the assembler, see Chapter 5.

For information on using the linker, see Chapter 6.

For information on debugging support, see Chapter 7.

For information on using the programming utilities, see Chapter 8.
For information on the compiler passes, see Appendix D.

© 2003 COSMIC Software Introduction 13

CHAPTER

2

Tutorial Introduction

This chapter will demonstrate, step by step, how to compile, assemble
and link the example program acia.c, which is included on your distri-
bution media. Although this tutorial cannot show all the topics relevant
to the COSMIC toals, it will demonstrate the basics of using the com-
piler for the most common applications.

In thistutorial you will find information on the following topics:
o Default Compiler Operation
e Compiling and Linking
» Linking Your Application
* Optimize Function Call
» Generating Automatic Data Initialization

e Specifying Command Line Options

© 2003 COSMIC Software Tutorial Introduction

Acia.c, Examplefile

Acia.c, Example file

The following is alisting of acia.c. This C source file is copied during
the installation of the compiler:

/* EXAMPLE PROGRAM WITH INTERRUPT HANDLING
*
/

#include <io.h>

#define SIZE 64 /* buffer size */
#define TDRE 0x80 /* transmit ready bit */
/* Authorize interrupts. */

#define cli() _asm(“cli\n™)

/* Some variables */

char buffer[SI1ZE]; /* reception buffer */
char * ptlec; /* read pointer */
char * ptecr; /* write pointer */

/* Character reception.

* Loops until a character is received.
*/
char getch(void)
{
char c; /* character to be returned */

while (ptlec == ptecr) /* equal pointers => loop */

c = *ptlec++; /* get the received char */

if (ptlec >= &buffer[SIZE])/* put in in buffer */
ptlec = buffer;

return (c);

}

/* Send a char to the SCI.
*/
void outch(char c)

{
while (1(SCSR & TDRE)) /* wait for READY */

SCDR = c; /* send it */
T

/* Character reception routine.
* This routine is called on interrupt.

16 Tutorial Introduction © 2003 COSMIC Software

Acia.c, Examplefile

* It puts the received char in the buffer.

*/

@interrupt void recept(void)
{
ptecr = SCSR; / clear interrupt */
ptecr++ = SCDR; / get the char */

if (ptecr >= &buffer[SI1ZE]) /* put it in buffer */
ptecr = buffer;

3
/* Main program.
* Sets up the SCI and starts an infinite loop
* of receive transmit.
*/
void main(void)
{
ptecr = ptlec = buffer; /* initialize pointers */
BAUD = 0x30; /* initialize SCI */
SCCR2 = 0x2c; /* parameters for interrupt */
cliQ; /* authorize interrupts */
for (;3) /* loop */
outch(getch()); /* get and put a char */
¥

Default Compiler Operation
By default, the compiler compiles and assembles your program. You

may then link object files using clnk to create an executable program.

As it processes the command line, cx6805 echoes the name of each
input file to the standard output file (your terminal screen by default).
You can change the amount of information the compiler sends to your
terminal screen using command line options, as described later.

According to the options you will use, the following files, recognized
by the COSMIC naming conventions, will be generated:

files Assembler source module
file.o Relocatable object module
file.h05 input (e.g. libraries) or output (e.g. absolute executable)

filefor the linker

© 2003 COSMIC Software Tutorial Introduction

Compiling and Linking

Compiling and Linking

To compile and assemble acia.c using default options, type:

‘ cx6805 acia-c l

The compiler writes the name of the input file it processes:

‘ acia.c: ‘

The result of the compilation processis an object module named acia.o
produced by the assembler. We will, now, show you how to use the dif-
ferent components.

Sep 1: Compiling
The first step consists in compiling the C source file and producing an
assembly language file named acia.s.

‘ cx6805 -s acia-c ‘

The -s option directs cx6805 to stop after having produced the assembly
file acia.s. You can then edit this file with your favorite editor. You can
aso visualize it with the appropriate system command (type, cat,
more,...). For example under MS/DOS you would type:

‘ type acia.s ‘

If you wish to get an interspersed C and assembly language file, you
should type:

‘ cx6805 -1 acia.c ‘

The -1 option directs the compiler to produce an assembly language file
with C source line interspersed in it. Please note that the C source lines
are commented in the assembly language file: they start with *;’.

As you use the C compiler, you may find it useful to see the various
actions taken by the compiler and to verify the options you selected.

18 Tutorial Introduction © 2003 COSMIC Software

Compiling and Linking

The -v option, known as verbose mode, instructs the C compiler to dis-
play all of itsactions. For exampleif you type:

cx6805 -v -s acia.c

the display will look like something similar to the following:

acia.c:
cp6805 -0 \2.cx1 -i\cx\h6805 -u acia.c
cg6805 -0 \2.cx2 \2.cx1l
co6805 -0 acia.s \2.cx2

The compiler runs each pass:

cp6805 the C parser
€cg6805 the assembly code generator
c06805 the optimizer

For more information, see Appendix D, “Compiler Passes’.

Sep 2: Assembler
The second step of the compilation is to assemble the code previously
produced. The relocatable object file produced is acia.o.

| cx6805 acia.s |

or

| ca6805 -i\cx32\h6805 acia.s |

if you want to use directly the macro cross assembler.

The cross assembler can provide, when necessary, listings, symbol
table, cross reference and more. The following command will generate
alisting file named acia.ls that will also contain a cross reference:

ca6805 -c -1 file.s

For more information, see Chapter 5, “Using The Assembler”.

© 2003 COSMIC Software Tutorial Introduction

19

Compiling and Linking

Sep 3: Linking
This step consists in linking relocatable files, also referred to as object
modules, produced by the compiler or by the assembler (<files>.0) into
an absolute executable file: acia.h05 in our example. Code and data
sections will be located at absolute memory addresses. The linker is
used with acommand file (acia.lkf in this example).

An application that uses one or more object module(s) may require sev-
eral sections (code, data, interrupt vectors, etc.,...) located at different
addresses. Each object module contains several sections. The compiler
creates the following sections:

Type ‘ Description
text code (or program) section (e.g. ROM)
.const constant and literal data (e.g. ROM)
.data initialized data in external memory (see @near in
chapter 3) (e.g. RAM)
.bss all non initialized data in external memory
.bsct initialized data in the first 256 bytes (see @tiny in

chapter 3), also called zero page.

.ubsct non initialized data in the zero page

.eeprom | any variable in eeprom (@eeprom)

.bit bit variables in the zero page

In our example, and in the test file provided with the compiler, the
acia.lkf file contains the following information:

line 1 # LINK COMMAND FILE FOR TEST PROGRAM

line 2 # Copyright (c) 1995 by COSMIC Software

line 3 #

line 4 +seg .text -b 0x3000 # program start address
line 5 +seg .bsct -b 0x20 # zero page start address
line 6 +seg .data -b 0x100 # data start address

line 7 crts.o # startup routine

line 8 acia.o # application program
line 9 \cx\lib\libi._h05 # C library (if needed)
line 10 \cx\lib\libm._h05 # machine library

20 Tutorial Introduction © 2003 COSMIC Software

Compiling and Linking

line 11 +seg .text -bOx3ff8 # vectors start address
line 12 vector.o # interrupt vectors file
line 13 +def _ memory=@.bss # symbol used by startup

You can create your own link command file by modifying the one pro-
vided with the compiler.

Hereisthe explanation of the linesin acia.lkf:

lines 1 to 3: These are comment lines. Each line can include comments.
They must be prefixed by the “#” character.

line4: +seg -text -b0x3000 creates atext (code) segment located
at 3000 (hex address)

line5: +seg .bsct -b0x20 creates a zero page segment located at 20
(hex address)

line 6: +seg .data -bOx100 creates a data segment located at 100
(hex address)

line 7: crts.o runtime startup code. It will be located at 0x3000
(code segment)

line 8: acia.o, thefile that constitutes your application. It follows the
startup routine for code and data

line 9: 1ibi.h05 theinteger library to resolve references
line 10: 1ibm.hO5 the machine library to resolve references

line 11: +seg .text -bOx3ff8 creates a new segment text (code)
segment located at 3FF8 (hex address)

line 12: vectors.o interrupt vectorsfile

line 13: +def __ memory=@.bss defines a symbol __memory equal
to the value of the current address in the .bss segment. This is used to
get the address of the end of the bss. The symbol __memory is used by
the startup routine to reset the bss.

© 2003 COSMIC Software Tutorial Introduction 21

Compiling and Linking

By default, and in our example, the .bss segment follows the .data seg-
ment.

The crts.o file contains the runtime startup that performs the following
operations:

e initidizethe bss, if any
 initialize the stack pointer
» call main() or any other chosen entry point.

For more information, see “ Modifying the Runtime Sartup” in Chapter
3.

After you have modified the linker command file, you can link by typ-
ing:

‘ clnk -o acia.h05 acia.lkf

For more information, see Chapter 6, “Using The Linker”.

Sep 4: Generating S-Recordsfile
Although acia.h05 is an executable image, it may not be in the correct
format to be loaded on your target. Use the chex utility to transate the
format produced by the linker into standard formats. To translate
acia.h05 to Motorola standard S-record format:

‘ chex acia.h05 > acia.hex ‘

or

‘ chex -o acia.hex acia.h05 ‘

acia.hex is now an executable image in Motorola S-record format and
is ready to be loaded in your target system.

For more information, see “ The chex Utility” in Chapter 8.

22 Tutorial Introduction © 2003 COSMIC Software

Linking Your Application

Linking Your Application

You can create as many text, data and bss segments as your application
reguires. For example, assume we have one bss, two data and two text
segments. Our link command file will ook like:

+seg .bsct -b0x20
var_zpage.o

#
#

zpage start address
file with zpage variable

+seg -text -b 0x1000 -n .text # program start address
+seg .const -a .text # constant follow

+seg .data -b 0x100 # data start address
+seg .bss -b 0x200 # bss start address
crts.o # startup routine

acia.o # main program

modulel.o # application program
+seg .text -b 0x2000 # start new text section
module2.o # application program
module3.o # application program
\cx\lib\libi.h05 # C library (if needed)
\cx\lib\libm.h05 # machine library

+seg .text -bOx3ff8 # vectors start address
vector.o # interrupt vectors
+def __memory=@.bss # symbol used by startup

© 2003 COSMIC Software

In this example the linker will locate and merge crts.o, acia.o and
modulel.o in atext segment at 0x1000, a data segment at 0x100 and a
bss segment, if needed at 0x200. zero page variables will be located at
0x20. The rest of the application, module2.0 and module3.0 and the
libraries will be located and merged in a new text segment at 0x2000
then the interrupt vectors file, vector.o in atext segment at 0Ox3fFf8. All
constants will be located after the first text segment.

For more information about the linker, see Chapter 6, “Using The
Linker”.

Tutorial Introduction

23

Optimize Function Call

Optimize Function Call

The compiler can optimize the function call, which produce less code
but creating atime overhead at each function call. You must, first, spec-
ify the -I option to cx6805 to generate listing file, then link the full
application, call the ct6805 utility to produce the jump table, jmptab.s,
and rebuild the full application by specifying the +jmp option to
cx6805. From the example provided with the package, type the follow-
ing commands:

cx6805 -vl acia.c vector.c
clnk -o acia.h05 acia.lkf
ct6805 -0 jmptab.s acia.h05
cx6805 -vI +jmp acia.c vector.c
clnk -o acia.h05 acia.lkf

For more information, see “Function Call Optimization” in Chapter 3.

24 Tutorial Introduction © 2003 COSMIC Software

Generating Automatic Data Initialization

Generating Automatic Data Initialization
Usually, in embedded applications, your program must reside in ROM.

Thisis not an issue when your application contains code and read-only
data (such as string or const variables). All you have to do is burn a
PROM with the correct values and plug it into your application board.

The problem comes up when your application uses initial data values
that you have defined with initialized static data. These static data val-
ues must reside in RAM.

There are two types of static datainitializations:
1) datathat is explicitly initialized to zero or a non-zero value:
char varl = 25;
which is generated into the .bsct section and
2) datathat is explicitly left uninitialized:
char var2;
which is generated into the .ubsct section.

There is one exception to the above rules when you declare data that
will be located in the external memory, using the @near type quali-
fier. In this case, the data is generated into the .data section if it isini-
tialized or in the .bss section otherwise.

The first method to ensure that these values are correct consists in add-
ing codein your application that reinitializes them from a copy that you
have created and located in ROM, at each restart of the application.

The second method is to use the crtsi.h05 (or crtsx.h05 for variables
located in external memory) start-up file:

1) that defines a symbol that will force the linker to create a copy of
theinitialized RAM in ROM

2) and that will do the copy from ROM to RAM

© 2003 COSMIC Software Tutorial Introduction

Generating Automatic Data Initialization

The following link file demonstrates how to achieve automatic data ini-
tiaization.

demo.lkf: link command with automatic init

+seg .text -b 0x1000 -n .text# program start address
+seg .const -a .text # constant follow

+seg .bsct -b 0x20 -n iram -m Ox100# zpage start address

+seg .share -a iram -is shared segment

+seg .data -b0x100 data start address
\cx\lib\crtsi.h05 startup with auto-init
acia.o main program

modulel.o module program

\cx\lib\libi.h05
\cx\lib\libm._h05
+seg .text -b Ox3ff8
vector.o

+def __ _memory=@.bss

C library (if needed)
machine library
vectors start address
interrupt vectors
symbol used by library

HHHFHHFH R

In the above example, the text segment is located at address 0x1000,
the data segment is located at address 0x100, immediately followed by
the bss segment that contains uninitialized data. The initialized data in
ROM will follow the descriptor created by the linker after the code seg-
ment.

In case of multiple code and data segments, alink command file could
be:

demoinit.lkf: link command with automatic init
+seg .text -b 0x1000 -n .text# program start address

+seg .const -a .text

#

constant follow

+seg .bsct -b 0x20 -n iram -m Ox100# zpage start address

\cx\lib\libi._h05
\cx\lib\libm.h05
+seg -text -b Ox3ff8
vector.o

C library (if needed)
machine library
vectors start address
interrupt vectors

+seg .share -a iram -is # shared segment
+seg .data -b0x100 # data start address
\cx\lib\crtsi.h05 # startup with auto-init
acia.o # main program
modulel.o # module program
+seg .text -b0x1800 # new code segment
module2.0 # module program
module3.o # module program

#

#

#

#

#

+def ___memory=@.bss

26 Tutorial Introduction

symbol used by startup

© 2003 COSMIC Software

Fecifying Command Line Options

or

demoinit.lkf: link command with automatic init

+seg -text -b 0x1000 -n .text# program start address
+seg .const -a .text # constant follow

+seg .bsct -b 0x20 -n iram -m 0x100# zpage start address

\cx\lib\libi.h05
\cx\lib\libm.h05
+seg -text -b Ox3ff8
vector.o

+def __ _memory=@.bss

C library (if needed)
machine library
vectors start address
interrupt vectors
symbol used by startup

+seg .share -a iram -is # shared segment
+seg .data -b0x100 # data start address
\cx\lib\crtsi.h05 # startup with auto-init
acia.o # main program
modulel.o # module program
+seg .text -b0x1800 -it # set the section attribut
module2.o # module program
module3.o # module program

#

#

#

#

#

In the first case, the initialized data will be located after the first code
segment. In the second case, the -it option instructs the linker to locate
the initialized data after the segment marked with this flag. The initial-
ized data will be located after the second code segment located at
address 0x1800.

For more information, see “Initializing data in RAM” in Chapter 3 and
“Automatic Data Initialization” in Chapter 6.

Specifying Command Line Options

You specify command line options to cx6805 to control the compilation
process.

To compile and get arelocatablefile, type:

cx6805 acia.c

Thefile produced is acia.o.

The -v option instructs the compiler driver to echo the name and options
of each program it calls. The -| option instructs the compiler driver to

© 2003 COSMIC Software Tutorial Introduction

Fpecifying Command Line Options

create amixed listing of C code and assembly language code in the file
acials.

To perform the operations described above, enter the command:

cx6805 -v -l acia.c

When the compiler exits, the following files are left in your current
directory:

» the C sourcefile acia.c
» the C and assembly language listing acia.ls
* the object module acia.o

It is possible to locate listings and object filesin specified directories if
they are different from the current one, by using respectivally the -cl
and -co options:

cx6805 -cl\mylist -co\myobj -1 acia.c

This command will compile the acia.c file, create a listing named
acia.ls in the \mylist directory and an object file named acia.o in the
\myabj directory.

cx6805 allows you to compile more than onefile. The input files can be
C source files or assembly source files. You can also mix all of these
files.

If your application is composed with the following files: two C source
files and one assembly source file, you would type:

cx6805 -v start.s acia.c getchar.c

This command will assemble the start.s file, and compile the two C
sourcefiles.

See Chapter 4, “Using The Compiler” for information on these and
other command line options.

28 Tutorial Introduction © 2003 COSMIC Software

CHAPTER

3

Programming
Environments

This chapter explains how to use the COSMIC program devel opment
system to perform special tasks required by various MC68HCO5 appli-
cations.

© 2003 COSMIC Software Programming Environments 29

Introduction

Introduction
This chapter provides details aboult:

¢ Modifying the Runtime Startup

* Initiadlizing datain RAM

* Bit Variables

» Theconst and volatile Type Qualifiers

e Performing Input/Output in C

» Referencing Absolute Addresses

e Accessing Internal Registers

e Placing Data Objectsin The Bss Section

e Placing Data Objectsin Internal Memory
e Placing Data Objectsin External Memory
¢ Placing Data Objects in the EEPROM Space
* Redefining Sections

e Local Variables and Arguments

* Inserting Inline Assembly Instructions

e Writing Interrupt Handlers

e Placing Addresses in Interrupt Vectors

¢ Function Call Optimization

* Inline Function

e Interfacing C to Assembly Language

* Register Usage

« Data Representation

30 Programming Environments © 2003 COSMIC Software

Modifying the Runtime Sartup

Modifying the Runtime Startup

The runtime startup module performs many important functions to
establish aruntime environment for C. The runtime startup file included
with the standard distribution provides the following:

Initialization of the bss section if any,

ROM into RAM copy if required,
Initialization of the stack pointer,

_main or other program entry point call, and

An exit sequence to return from the C environment. Most users
must modify the exit sequence provided to meet the needs of their
specific execution environment.

The following is alisting of the standard runtime startup file crts.h05
included on your distribution media. It does not perform automatic data
initialization. A special startup program is provided, crtsi.h05, whichis
used instead of crts.h05 when you need automatic data initialization (or
crtsx.h05 for datalocated in external memory). The runtime startup file
can be placed anywhere in memory. Usualy, the startup will be
“linked” with the RESET interrupt, and the startup file may be at any
convenient location.

1
2
3
4
5
6
-
8

9
10
11
12
13
14

C STARTUP FOR MC68HCO5
Copyright (c) 1995 by COSMIC Software

xref _main
xdef _exit, _ stext, c_h

switch.text

__stext:
Ida #$81 ; RTS
sta c_h+2 ; opcode in place
rsp ; reset stack pointer
jsr _main ; execute main
_exit:
bra _exit ; and stay here

15 ;

16 ;

area for external memory access

© 2003 COSMIC Software Programming Environments

31

Initializing data in RAM

17 ;

18 switch.ubsct

19 ds.b 1 ; opcode

20 c_h:

21 ds.b 3 ; MSB + LSB + rts
22 ;

23 end

Description of Runtime Startup Code
_main isthe entry point into the user C program.

Line 11 resets the stack pointer.
Line 12 calls main() in the user's C program.

Lines13to 14 trap areturn from main(). If your application must return
to amonitor, for example, you must modify thisline.

Lines 18 to 21 reserve bytes for external memory access

Initializing data in RAM

If you have initialized static variables, which are located in RAM, you
need to perform their initialization before you start your C program.
The cInk linker will take care of that: it moves the initialized data seg-
ments after the first text segment, or the one you have selected with the
-it option, and creates a descriptor giving the starting address, destina-
tion and size of each segment.

The table thus created and the copy of the RAM arelocated in ROM by
the linker, and used to do the initialization. An example of how to do
thisis provided in the crtsi.s (or crtsx.sfor variables located in external
memory) file, located in the headers sub-directory.

C STARTUP FOR MC68HCO05

WITH AUTOMATIC DATA INITIALISATION

Copyright (c) 1995 by COSMIC Software

xref _main, _ memory, _ idesc__
xdef _exit, _ stext, c_h, c_reg

switch.text
__stext:

32 Programming Environments © 2003 COSMIC Software

Initializing data in RAM

rsp ; reset stack pointer
Ida #$81 ; RTS
sta c_h+2 ; opcode in place
Ida #%$D6 ; LDA 1X2
sta c_h-1 ; opcode in place
clrx ; start index
ibcl:
Ida _ idesc__ +2,x ; test flag byte
beq prog ; no more segment
Ida _ idesc__ +1,x ; compute start
sub _ idesc__ +4,x ; offset by ram address
sta c_h+l ; in read vector
Ida _ _idesc__ ,x ; because sharing
sbc #0 ; the same
sta c_h ; index
Ida _ idesc__ +6,x ; compute length
sub _ idesc__ +1,x ; of segment
add _ idesc__+4,x ; ram end address
sta c_reg ; save for compare
stx c_reg+l ; save index
ldx _ idesc__+4,x ; load ram address
dbcl:
jsr c_h-1 ; load byte
sta 0,x ; store it
incx ; next byte
cpx c_reg ; end address
bne dbcl ; no, loop back
Ida c_reg+l ; get back index
add #5 ; next descriptor
tax ; in place
bra ibcl ; and loop
prog:
jsr _main ; execute main
exit
bra _exit ; and stay here
; area for external memory access
switch.ubsct
ds.b 1 ; opcode
c_h:
ds.b 3 ; MSB + LSB + rts
c_reg:
ds.b 2 ; extra accumulator
end

© 2003 COSMIC Software

Programming Environments

33

Initializing data in RAM

crtsi.s performs the same function as described with the crts.s, but with
one additional step. Lines (marked in bold) in crtsi.s include code to
copy the contents of initialized static data, which has been placed in the
text section by the linker, to the desired location in RAM.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “ Automatic Data Initialization” in Chapter 6.

34 Programming Environments © 2003 COSMIC Software

Bit Variables

Bit Variables

The C compiler implements bit variables using the _Bool type name as
defined by the new ANSI/ISO standard C99 (also referenced as C9X).
A _Bool variable is a boolean object which only contains the values
true and false. They are implemented on single bits with value 1 for
true and O for false. When assigning an expression to a_Bool variable,
the compiler compares the expression against zero and assigns the
boolean result to the boolean variable. So, any integer, real or pointer
expression can be assigned to a boolean variable. It is not possible to
declare arrays of booleans nor pointers to booleans, but booleans can be
used as structure or union fields. Consecutive Bool fields will be
packed in bytes.

The compiler packs global _Bool variables in bytes using a bit section
named .bit which needs to be alocated in the zero page in order to
alow and efficient handling using the bit instructions. Local _Bool var-
iables are also packed in bytes regardless of the memory model. _Bool
arguments are passed widened to a single byte.

_Bool in_range;
_Bool p_valid;
char *ptr;

in_range = (value >= 10) && (value <= 20);
p_valid = ptr; /* p_valid is true if ptr not 0 */
if (p_valid && in_range)

*ptr = value;

NOTE

The current linker is building the bit segment using bit addresses and its
content is not packed, meaning that each bit initial value is created on a
byte. Such a segment cannot be initialized with the standard initialization
mechanism as provided in the startup files. Such a segment will also be
output on a byte basis by the chex utility. Pratically, such a segment
should be declared with the -c option in order to suppress any content in
the linker output file.

© 2003 COSMIC Software Programming Environments 35

The const and volatile Type Qualifiers

The const and volatile Type Qualifiers

You can add the type qualifiers const and volatile to any base type or
pointer type attribute.

\olatile types are useful for declaring data objects that appear to be in
conventional storage but are actually represented in machine registers
with special properties. You use the type qualifier volatile to declare
memory mapped input/output control registers, shared data objects, and
data objects accessed by signal handlers. The compiler will not opti-
mize references to volatile data.

An expression that stores a value in a data object of volatile type stores
the value immediately. An expression that accesses a value in a data
object of volatile type obtains the stored value for each access. Your
program will not reuse the value accessed earlier from a data object of
volatile type.

NOTE

The volatile keyword must be used for any data object (variables) that
can be modified outside of the normal flow of the function. Without the
volatile keyword, all data objects are subject to normal redundant code
removal optimizations. Volatile MUST be used for the following condi-
tions:

1) All data objects or variables associated with a memory mapped hard-
ware register e.g. volatile char PORTD @0x03

2) All global variable that can be modified (written to) by an interrupt
service routine either directly or indirectly. e.g. a global variable used as
a counter in an interrupt service routine.

You use const to declare data objects whose stored values you do not
intend to alter during execution of your program. You can therefore
place data objects of const type in ROM or in write protected program
segments. The cross compiler generates an error message if it encoun-
ters an expression that alters the value stored in a const data object.

36 Programming Environments © 2003 COSMIC Software

The const and volatile Type Qualifiers

If you declare a static data object of const type at either file level or at
block level, you may specify its stored value by writing a data initial-
izer. The compiler determines its stored value from its data initializer
before program startup, and the stored value continues to exist
unchanged until program termination. If you specify no datainitializer,
the stored value is zero. If you declare a data object of const type at
argument level, you tell the compiler that your program will not alter
the value stored in that argument in the related function. If you declare a
data object of const type and dynamic lifetime at block level, you must
specify its stored value by writing a data initializer. If you specify no
datainitializer, the stored value is undefined.

The const keyword implies the @near memory space to allow such a
variable to be located in the code space. If a memory space modifier is
explicitly given on a declaration using the const keyword, the compiler
uses the given space instead of the default one, meaning that the object
may not be located in the code space depending on the memory space
given. In such a case, the const keyword still enforces the assignment
checking.

You may specify const and volatile together, in either order. A const
volatile data object could be a Read-only status register, or a status var-
iable whose value may be set by another program.

Examples of data objects declared with type quaifiersare:

char * const x; /* const pointer to char */
int * volatile y; /* volatile pointer to int */
const float pi = 355.0 / 113.0; /* pi is never changed */

© 2003 COSMIC Software Programming Environments 37

Performing Input/Output in C

Performing Input/Output in C

You perform input and output in C by using the C library functions
getchar, gets, printf, putchar, puts and sprintf. They are described in
chapter 4.

The C source code for these and al other C library functionsisincluded
with the distribution, so that you can modify them to meet your specific
needs. Note that al input/output performed by C library functions is
supported by underlying calls to getchar and putchar. These two func-
tions provide access to al input/output library functions. The library is
built in such away so that you need only modify getchar and putchar,
therest of the library isindependent of the runtime environment.

Function definitions for getchar and putchar are:

char getchar(void);
char putchar(char c);

Referencing Absolute Addresses

This C compiler alows you to read from and write to absolute
addresses, and to assign an absolute address to a function entry point or
to a data object. You can give amemory location a symbolic nhame and
associated type, and use it as you would do with any C identifier. This
feature is usefull for accessing memory mapped 1/O ports or for calling
functions at known addressesin ROM.

References to absolute addresses have the general form @<address>,
where <address> is avalid memory location in your environment. For
example, to associate an 1/0O port at address Ox0e with the identifier
name SCCR1, write adefinition of the form:

char SCCR1 @0xOe;

where @0x0e indicates an absolute address specification and not a data
initializer. Since input/output on the MC68HCO5 architecture is mem-
ory mapped, performing /O in this way is equivaent to writing in any
given location in memory.

38 Programming Environments © 2003 COSMIC Software

Referencing Absolute Addresses

Such a declaration does not reserve any space in memory. The compiler
still creates alabel, using an equate definition, in order to reference the
C object symbalically. This symbol is made public to alow external
usage from any other file.

Individual bits can also be declared as _Bool objects by adding a bit
number to the address using the syntax @<address>:<bithum>, where
<address> is a byte memory location and <bithum> a bit number
expressed by a constant value (or expression) between 0 and 7. For
example, to define bit 3 of memory byte at 0x01 as PORTB:

_Bool PORTB @0x01:3;

To usethe I/O port in your application, write:

char c;
c = SCCR1; /* to read from input port */
SCCR1 = c; /* to write to output port */

Another solutionsis to use a#define directive with a cast to the type of
the object being accessed, such as:

#define SCCR1 *(char *)0xOe

which is both inelegant and confusing. The COSMIC implementation is
more efficient and easier to use, at the cost of aslight lossin portability.
Note that COSMIC C does support the pointer and #define methods of
implementing /O access.

Another example of how to reference a direct memory address, defines
astructure at absolute address 0x6000:

struct acia

{

char status;
char data;

} acia @0x6000

© 2003 COSMIC Software Programming Environments 39

Accessing Internal Registers

Using this declaration, references to acia.status will refer to mem-
ory location 0x6000 and acia.data will refer to memory location
0x6001. Thisis very useful if you are building your own custom I/O
hardware that must reside at some location in the 68HC0O5 memory

map.

Accessing Internal Registers

All registers are declared in the io.h file provided with the compiler.
Thisfile should beincluded in each file using the input-output registers,
for example by a:

#include <io.h>

All the register names are defined by assembly equates which are made
public. This alows any assembler source to use directly the input-out-
put register names by defining them with an xref directive. All those
definitions are aready provided in the io.s file which may be included
in an assembly source by a

include "io.s"

Note that the compiler will access to these registers as standard varia-
bles. In some case of reading or writing some “int” registers, you should
declare an union (with two char and one int) instead of using directly
the I/O register.

Placing Data Objects in The Bss Section

The compiler automatically reserves space for uninitialized data object.
All such data are placed in the .bss section. All initialized static data are
placed in the .data section. The bss section is located, by default, after
the data section by the linker.

The run-time startup files, crts.sand crtsi.s, contain code which initial-
izes the bss section space to zero.

The compiler provides a special option, +nobss, which forces uninitial-

ized data to be explicitly located in the .data section. In such a case,
these variables are considered as beeing explicitely initialized to zero.

40 Programming Environments © 2003 COSMIC Software

Placing Data Objectsin Internal Memory

Placing Data Objects in Internal Memory

The compiler alocates al the variables in the zero page by default.
Such variables will be located into the section .bsct if they are initial-
ized, or in the section .ubsct otherwise. An external object nameis pub-
lished via a xref.b declaration at the assembly language level. A
variable can be explicitely allocated in zero page by using the @tiny
modifier:

@tiny char c;

NOTE

The code generator does not check for zero page overflow.

Setting Zero Page Size
You can set the size of the zero page section of your object image at link
time by specifying the following options on the linker command line;

| +seg -bsct -m##

where ## represents the size of the zero page section in bytes. Note that
the size of the zero page section can never exceed 256 bytes.

Placing Data Objects in External Memory

The compiler allows variables to be allocated in external memory by
using the @near modifier. Such variables will be located into the .data
section if they are initialized, or in the .bss section otherwise. An exter-
nal object name is published via a xref declaration at the assembly lan-
guage level. The following declaration:

@near char ext;

instructs the compiler to locate the variable ext in the external memory.

To place data objects into external memory on afile basis, you use the
#pragma directive of the compiler. The compiler directive:

© 2003 COSMIC Software Programming Environments 41

Placing Data Objects in the EEPROM Space

‘ #pragma space [] @near ‘

instructs the compiler to place all data objects of storage class extern or
static into external memory for the current unit of compilation (usually
afile).

The section must end with a #pragma space [] @tiny to revert to the
default compiler behaviour.

Placing Data Objects in the EEPROM Space

The compiler allows the use to define a variable as an eeprom location,
using the type qualifier @eeprom. This causes the compiler to produce
special code when such a variable is modified. When the compiler
detects awrite to an eeprom location, it calls a machine library function
which performs the actual write. An example of such a definition is:

‘ @eeprom char var; ‘

To place al data objects from a file into egprom, you can use the
#pragma directive of the compiler. The directive

‘ #pragma space [] @eeprom @near ‘

instructs the compiler to treat all extern and static datain the current file
as eepromlocations. The @near modifier is necessary because the eep-
rom islocated outside the zero page.

The section must end with a #pragma space [] @near or @tiny,
depending on the memory model selected.

The compiler alocates @eeprom variables in a separate section named
.eeprom, which will be located at link time. The linker directive:

+seg -eeprom -bOxb600 -m512
var_eeprom.o

42 Programming Environments © 2003 COSMIC Software

Redefining Sections

will create a segment located at address Oxb600, with a maximum size

of 512 bytes.

NOTE

The code generator cannot check if data address will be eeprom
addresses after linkage.

Redefining Sections

The compiler uses by default predefined sections to output the various
component of a C program. The default sections are;

Section | Description
text executable code
.const text string and constants
.data initialized variables (@near)
.bss uninitialized variables (@near)
.bsct initialized variables in zero page (@tiny by default)
.ubsct uninitialized variables in zero page (@tiny by default)
.eeprom any variable in eeprom (@eeprom)
.bit bit variables in the zero page

It is possible to redirect any of these components to any user defined
section by using the following pragma definition:

#pragma section <attribute> <qualified_name>

where <attribute> is either empty or one of the following sequences:

const
_Booal
@tiny
@near

@eeprom

© 2003 COSMIC Software

Programming Environments 43

Redefining Sections

and <qualified_name> is a section name enclosed as follows:

(name) - parenthesis indicating a code section
[name] - square brackets indicating uninitialized data
{name} - curly bracesindicating initialized data

A section nameis aplain C identifier which does not begin with a dot
character, and which is no longer than 13 characters. The compiler will
prefix automatically the section name with a dot character when passing
this information to the assembler. It is possible to switch back to the
default sections by omitting the section name in the <qualified_name>
sequence.

Each pragma directive starts redirecting the selected component from
the next declarations. Redefining the bss section forces the compiler to
produce the memory definitions for all the previous bss declarations
before to switch to the new section.

The following directives:

#pragma section (code)

#pragma section const {string}
#pragma section @near [udata]

#pragma section @near {idata}

#pragma section [uzpage]

#pragma section {izpage}

#pragma section @eeprom @near {e2prom}
#pragma section _Bool {bdata}

redefine the default sections (or the previous one) as following:

- executable code is redirected to section .code

- strings and constants are redirected to section .string

- uninitialized variables are redirected to section .udata

- initialized data are redirected to section .idata

- uninitialized zpage variables are redirected to section .uzpage
- initialized zpage variables are redirected to section .izpage

- eeprom variables are redirected to section .e2prom

- bit variables are redirected to section .bdata

44 Programming Environments © 2003 COSMIC Software

Local Variables and Arguments

Note that {name} and [name] are equivalent for constant, zero page
and eeprom sections as they are all considered as initialized.

Thefollowing directive:

| #pragma section ()

switches back the code section to the default section .text.

Local Variables and Arguments

The compiler does not use any stack as the processor itself does not pro-
vide such afeature, and allocates local variables and argumentsin inter-
nal memory at fixed addresses. This implies that this compiler cannot
build recursive functions. By default, the compiler instructs the linker to
optimize the memory allocation of those areas, by sharing the memory
areas corresponding to functions never calling each other. This mecha
nism can be defeated by specifying the +nsh compiler option, then allo-
cating a separate area for each function, or by using the type qualifier
@noshare on aspecific function, then all ocating a separate area for that
function only.

© 2003 COSMIC Software Programming Environments 45

Inserting Inline Assembly Instructions

Inserting Inline Assembly Instructions

The compiler features two ways to insert assembly instructionsin a C
file. The first method uses #pragma directives to enclose assembly
instructions. The second method uses a special function call to insert
assembly instructions. The first one is more convenient for large
sequences but does not provide any connexion with C object. The sec-
ond one is more convenient to interface with C objects but is more lim-
ited regarding the code length.

Inlining with pragmas

The compiler accepts the following pragma sequences to start and fin-
ish assembly instruction blocks:

Directive | Description

#pragma asm start assembler block

#pragma endasm end assembler block

The compiler aso accepts shorter sequences with the same meaning:

Directive | Description
#asm start assembler block
#endasm end assembler block

Such an assembler block may be located anywhere, inside or outside a
function. Outside a function, it behaves syntactically as a declaration.
This means that such an assembler block cannot split a C declaration
somewhere in the middle. Inside a function, it behaves syntactically as
one C instruction. This means that there is no trailing semicolon at the
end, and no need for enclosing braces. It also means that such an assem-
bler block cannot split a C instruction or expression somewhere in the
middle.

The following example shows a correct syntax:

46 Programming Environments © 2003 COSMIC Software

Inserting Inline Assembly Instructions

#pragma asm
xref asmvar
#pragma endasm

extern char test;

void func(void)

{

if (test)

#asm/* no need for { */

sec; set carry bit

rol asmvar; access assembler variable
#endasm

else

test = 1;

ks

Inlining with _asm
The _asm() function inserts inline assembly code in your C program.
Thesyntax is:

| _asm(““string constant”, arguments...);

The “string constant” argument is the assembly code you want embed-
ded in your C program. “arguments’ follow the standard C rules for
passing arguments. The string you specify follows standard C rules. For
example, carriage returns can be denoted by the ‘\n’ character.

NOTE

The argument string must be shorter than 255 characters. If you wish to
insert longer assembly code strings you will have to split your input
among consecutive callsto _asm().

For example, to produce the following assembly sequence:

rsp
Jsr _main

© 2003 COSMIC Software Programming Environments 47

Inserting Inline Assembly Instructions

you would write:

‘ _asm(““rsp\n jsr _main\n’);

The ‘\n’ character is used to separate the instructions when writing mul-
tiple instructions in the same line.

_asm() does not perform any checks on its argument string. Only the
assembler can detect errors in code passed as argument to an _asm()
call.

_asm() can be used in expressions, if the code produced by _asm com-
plies with the rules for function returns. For example:

‘ var = _asm(*“asra\n rola\n rola\n”, var);

allows to rotate the variable var passed as argument in the a register,
and store the result in the same variable. The variable var is supposed to
be declared asa char, and isloaded in the a register becauseit is consid-
ered as afirst argument. The result is expected in the a register in order
to comply with the return register convention, as described below.

NOTE
With both methods, the assembler source is added as is to the code dur-
ing the compilation. The optimizer does not modify the specified instruc-
tions, unless the -a option is specified on the code generator. The
assembler input can use lowercase or uppercase mnemonics, and may
include assembler comments.

By default, asm() is returning an int as any undeclared function. To
avoid the need of severa definitions (usually confictuous) when _asm()
is used with different return types, the compiler implements a special
behaviour when a cast is applied to _asm(). In such a case, the cast is
considered to define the return type of _asm() instead of asking for a
type conversion. There is no need for any prototype for the _asm()
function asthe parser verifiesthat the first argument is a string constant.

48 Programming Environments © 2003 COSMIC Software

Writing Interrupt Handlers

Inlining L abels
When labels are necessary in the inlined assemby code, the compiler
provides a specia syntax allowing local labels to be created and han-
dled without interaction with other labels and the optimizer. The
sequence $N in the assembly source is replaced by a new label name
while the sequence $L is replaced by the label name created by the last
$N. Using this syntax, a simple wait loop may be entered as follow:

#asm

lda #7
$N:

bne $L ; loop on the previous label
#endasm

Writing Interrupt Handlers

A function declared with the type qualifier @interrupt is suitable for
direct connection to an interrupt (hardware or software). @interrupt
functions may not return a value. @interrupt functions are allowed to
have arguments, although hardware generated interrupts are not likely
to supply anything meaningful.

IMPORTANT
A function cannot be called by an interrupt function and by a standard
function, because the function is then included in more than one graph.
Otherwise the linker will output an error message (function is reentrant).

When you define an @interrupt function, the compiler uses the “rti”
instruction for the return sequence, and saves, if necessary, the memory
bytes used by the compiler for itsinternal usage. Those areas are ¢_reg
(up to 2 bytes), c_h (3 bytes) and c_lreg (4 bytes). Those bytes will be
saved and restored if the interrupt function uses them directly. If the
interrupt function does not uses these areas directly, but calls another C
function, the ¢ reg and c_h areas will be automatically saved and
restored, unless using the type qualifier @nosvf on the interrupt func-
tion definition. This qualifier can be used when the called functions are
known not using those areas, but the compiler does not perform any
verification. The c_Ireg area is not saved implicitely in such a case, in
order to keep the interrupt function as efficient as possible. If any func-

© 2003 COSMIC Software Programming Environments

Placing Addressesin Interrupt Vectors

tion called by the interrupt function uses longs or floats, the c_Ireg area
can be saved by using the type qualifier @svireg on the interrupt func-
tion definition. Extra bytes will be added to the local variables of the
interrupt function to hold the copy.

You define an @interrupt function by using the type qualifier @inter-
rupt to qualify the type returned by the function you declare. An exam-
ple of such adefinition is:

@interrupt void it _handler(void)
{

You cannot call an @interrupt function directly from a C function. It
must be connected with the interrupt vectors table.

NOTE
The @interrupt modifier isan extension to the ANS standard.

Placing Addresses in Interrupt Vectors

You may use either an assembly language program or a C program to
place the addresses of interrupt handlers in interrupt vectors. The
assembly language program would be similar to the following example:

switch .text

xref handlerl, handler2, handler3
vectorl:dc.w handlerl
vector2:dc.w handler2
vector3:dc.w handler3

end

where handlerl1 and so forth are interrupt handlers.

A small C routine that performs the same operation is:

50 Programming Environments © 2003 COSMIC Software

Function Call Optimization

extern void handlerl(), handler2(), handler3(Q);
void (* const vector[]DO =

{

handlerl,

handler2,

handler3,

}:

where handlerl and so forth are interrupt handlers. Then, at link time,
include the following options on the link line:

| +seg .const -bOx3Ff8 vector.o

where vector.o is the file which contains the vector table. This file is
provided in the compiler package.

Function Call Optimization

Some 68HCO5 derivatives contain a small ROM area in the zero page
addressing range. This small area may be used as a jump table contain-
ing jump instructions to the mostly used functions of the application.
These functions can be accessed through this jump table using the
direct addressing mode instead of the extended addressing mode, thus
saving one byte for each function call, but creating a time overhead at
each function call.

The compiler is able to implement this feature in an almost automatic
way, by using the following sequences of operations:

1) build first the full application while compiling al the files with the
-| option to create assembly listings.

2) Run the ct6805 utility to create the jump table from the result of
the linker.

3) Rebuild the full application while compiling al the files with the

+jmp option, allowing the optimizer to perform automatically the
function name replacement.

© 2003 COSMIC Software Programming Environments 51

Function Call Optimization

NOTE

The current implementation requires the jump table file name to be:
jmptab.s.

The ct6805 utility reads the executable file produced by the linker and
finds the name of al the object files of the application. ct6805 then
scans al the listing files, if any, and creates as output an assembly
source file containing a replacement label followed by a jump instruc-
tion to the target function, for each of the selected function. The
selected function list is built by extracting the sixteen most used func-
tion names following ajsr instruction, including the library functions.

The jump table file must be assembled and linked at the appropriate
address.

For example, from the acia.h05 file built by the test program provided
with the package, run the following command:

ct6805 -0 jmptab.s acia.h05

This command produces the following result in the jmptab.sfile:

JUMP TABLE FOR 68HCO5
Copyright (c) 1995 by COSMIC Software

R_main:

jmp _main
R_outch:

jmp _outch
R_getch:

jmp _getch

xdef R_main
xref _main
xdef R_outch
xref _outch
xdef R_getch
xref _getch
end

Then, compiling the acia.c with the following command:

52 Programming Environments © 2003 COSMIC Software

Inline Function

cx6805 -vl +jmp acia.c

will generate (extract from the acia.lslisting file):

79 0045 bd0oO JsrR_getch

81 0047 bd00 JsrR_outch

84 0049 20fa bral32

85 xref._bR_outch

86 xref.bR_getch

87 xdef_main

88 xdef_recept
NOTE

The function names which have been replaced are prefixed with R.

Inline Function

The compiler allows access to specific instructions or features of the
68HCO05 processor, using @inline functions. Such functions shall be
declared as external functions with the @inline modifier. The compiler
recognizes three predefined functions when explicitly declared as fol-
lows:

@inline carry(void);
@inline irq(void);
@inline imask(void);

carry the carry function is used to test or get the carry bit from
the condition register. If the carry function is used in a
test, the compiler produces a bcc or bcs instruction. If
the carry function is used in any other expression, the
compiler produces a code sequence setting the a regis-
ter to 0 or 1 depending on the carry bit value.

irq the irq function is used to test the interrupt line level
using the bih or bil instruction. The irg function can be
used only in a test

© 2003 COSMIC Software Programming Environments 53

Inline Function

imask the imask function is used to test the interrupt mask bit
in the condition register using the bms or bmc instruc-
tion. The imask function can be used only in a test.

These functions are predeclared in the processor.h header file. A full
description with examplesis provided in Chapter 4.

Any other function declared as an @inline will be trandated into a call
to a user provided macro. The macro name is obtained by prefixing the
@inline function name with the * ’ character. Arguments are allowed
but should be restricted to variable references. Each reference is trans-
lated into the proper assembler expression (same translation as applied

by the compiler) and then passed to the macro as a quoted text string.

@inline functions may use the registers a and/or x, but the compiler can
not check their use and will not save them. To save the registers before
they are used by @inline functions, you must add the @usea and/or the
@usex modifiers. For example:

@inline @usea Isub(Q);

tellsthe compiler that Isub() uses the register a, so that the compiler will
saveit. If both registers are used, you must specify both modifiers.

54 Programming Environments © 2003 COSMIC Software

Interfacing C to Assembly Language

Interfacing C to Assembly Language

The C cross compiler trandates C programs into assembly language
according to the specifications described in this section.

You may write external identifiers in both uppercase and lowercase.
The compiler prepends an underscore ‘' character to each identifier.

The compiler places function code in the .text section. Function codeis
not to be altered or read as data. External function names are published
viaxdef declarations.

Literal data such as strings, float or long constants, and switch tables,
are normally generated into the .const section. An option on the code
generator allows such constants to be produced in the .text section

The compiler generates initialized data declared with the @near modi-
fier into the .data section. Such external data names are published via
xref declarations. Data you declare to be of “const” type by adding the
type qualifier const to its base type is normally generated into the .const
section. Initialized data declared with the @tiny space modifier will be
generated into the .bsct section. Such external data names are published
via xref.b declarations. Uninitialized data are normally generated into
the .bss section for @near variables or the .ubsct section for @tiny
variables, unless forced to the .data or .bsct section by the compiler
option +nobss. _Bool datais generated in the .bit section and external
names are published via xbit.b declarations.

.bsct @tiny char i =2; xdef
.ubsct @tiny char i; xdef
.data intinit=1 xdef
bss int uninit xdef
text char putchar(c); | xdef
bit _Bool Ptb; xdef
Any of above | extern int out; xref

© 2003 COSMIC Software Programming Environments 55

Register Usage

Function calls are performed according to the following:

1) Arguments are evaluated from right to left. The first argument is
stored inthe a register if it isachar, or in the a, x register pair if its
typeisshort or int, and if the function does not return a structure.

2) Thefunctioniscaled viaajsr _func instruction.

Register Usage

Except for the return value, the registers a, x and the condition codes
are undefined on return from afunction call. Thereturn valueisin aif it
is of type char or pointer to internal ram, a, x if it is of type short, inte-
ger or pointer to external ram or code space (const). The return value is
in the memory located at symbol c_Iregif it is of type long or float.

In order to access local variables and arguments, the compiler creates a
memory areaand a symbol used to accessthis area. The symbol nameis
obtained by adding the .L suffix to the function name. This symbol is
made public if the function is not declared with the static C keyword.
The first argument may be hold in register, and will be stored at the
function entry. Such afunction declaration:

int func(int argl, int arg2, iInt arg3)

will create the following memory area:

locals argl | arg2 arg3

?_func.L

56 Programming Environments © 2003 COSMIC Software

Data Representation

Data Representation

Data objects of type short int are stored as two bytes, more significant
byte first.

15 8 7 0

Most Significant Byte] L Less Significant Byte
Short Int

Data objects of type long integer are stored as four bytes, in descending
order of significance.

31 24 23 16 15 8 7 0

Most Significant Byte] L Less Significant Byte
Long

Plain pointers are stored as one byte. @near pointers (external or code
memory) are stored as two bytes.

Data objects of type float are represented as for the proposed |EEE
Floating Point Standard; four bytes stored in descending order of signif-
icance. The |EEE representation is. most significant bit is one for nega-
tive numbers, and zero otherwise; the next eight bits are the
characteristic, biased such that the binary exponent of the number isthe
characteristic minus 126; the remaining bits are the fraction, starting
with the weighted bit. If the characteristic is zero, the entire number is
taken as zero, and should be all zeros to avoid confusing some routines
that do not process the entire number. Otherwise there is an assumed 0.5
(assertion of the weighted bit) added to all fractions to put them in the
interval [0.5, 1.0). The value of the number isthe fraction, multiplied by
-1if thesign bit is set, multiplied by 2 raised to the exponent.

31 30 23 22 0

L Sign L Characteristic L Mantissa
Float representation

© 2003 COSMIC Software Programming Environments 57

CHAPTER

A

Using The Compiler

This chapter explains how to use the C cross compiler to compile pro-
grams on your host system. It explains how to invoke the compiler, and
describesits options. It also describes the functions which constitute the
C library. This chapter includes the following sections:

* Invoking the Compiler

* File Naming Conventions

» Generating Listings

» Generating an Error File

» Generating Jump Table

e CLibrary Support

e Usage of External Memory Pointers

» Descriptions of C Library Functions

© 2003 COSMIC Software Using The Compiler 59

Invoking the Compiler

Invoking the Compiler

To invoke the cross compiler, type the command cx6805, followed by
the compiler options and the name(s) of the file(s) you want to compile.
All the valid compiler options are described in this chapter. Commands
to compile source files have the form:

cx6805 [options] <files>.[c|s]

cx6805 is the name of the compiler. The option list is optional. You
must include the name of at least one input file <file>. <file> can be a
C source file with the suffix ‘.c’, or an assembly language source file
with the suffix *.s". You may specify multiple input files with any com-
bination of these suffixesin any order.

If you do not specify any command line options, cx6805 will compile
your <files> with the default options. It will also write the name of each
fileasitis processed. It writes any error messagesto STDERR.

The following command line:

cx6805 acia.c

compiles and assembles the acia.c C program, creating the rel ocatable
program acia.o.

If the compiler finds an error in your program, it halts compilation.
When an error occurs, the compiler sends an error message to your ter-
minal screen unless the option -e has been specified on the command
line. In this case, all error messages are written to a file whose name is
obtained by replacing the suffix .c of the source file by the suffix .err.
An error message is still output on the terminal screen to indicate that
errors have been found. Appendix A, “Compiler Error Messages’, lists
the error messages the compiler generates. If one or more command
line arguments are invalid, cx6805 processes the next file name on the
command line and begins the compilation process again.

The example command above does not specify any compiler options. In
this case, the compiler will use only default options to compile and

60 Using The Compiler © 2003 COSMIC Software

Invoking the Compiler

assemble your program. You can change the operation of the compiler
by specifying the options you want when you run the compiler.

To specify options to the compiler, type the appropriate option or
options on the command line as shown in the first example above.
Options should be separated with spaces. You must include the ‘-’ or
‘+' that is part of the option name.

Compiler Command Line Options
The cx6805 compiler accepts the following command line options, each

of which is described in detail below:

cx6805 [options] <Files>
-a*> assembler options
-ce* path for errors
-cl* path for listings
-co* path for objects
-d*> define symbol
-e create error file
-ex* prefix executables
-f* configuration file
-g*> code generator options
-i1*> path for include
-1 create listing
-no do not use optimizer
-0*> optimizer options
-p*> parser options
-s create only assembler file
-sp create only preprocessor file
-t* path for temporary files
-V verbose
-X do not execute
+*> select compiler options

-ar> specify assembler options. Up to 60 options can be speci-
fied on the same command line. See Chapter 5, “Using
The Assembler”, to get thelist of all accepted options.

-ce* specify apath for the error files. By default, errors are cre-
ated in the same directoy than the source files.

© 2003 COMIC Software Using The Compiler

61

Invoking the Compiler

-cl*

-CO*

-g*n

-eX

-i*>

-No

62 Using The Compiler

specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

specify a path for the object files. By default, objects are
created in the same directoy than the source files.

specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 20 such definitions.

log errors from parser in afile instead of displaying them
on the terminal screen. The error file name is defaulted to
<file>.err, and is created if there are errors.

use the compiler driver’s path as prefix to quickly locate
the executable passes. Default is to use the path variable
environment. This method is faster than the default behav-
ior but reduces the command line lenght.

specify * asthe name of a configuration file. Thisfile con-
tains alist of options which will be automatically used by
the compiler. If no file name is specified, then the compiler
looks for a default configuration file named cx6805.cxf in
the compiler directory as specified in the installation proc-
ess. For more information, see Appendix B, “Madifying
Compiler Operation”

specify code generation options. Up to 60 options can be
specified. See Appendix D, “Compiler Passes’, for thelist
of all accepted options.

define include path. You can define up to 60 different paths
Each path is a directory name, not terminated by any
directory separator character.

merge C source listing with assembly language code; list-
ing output defaultsto <file>.Is.

do not use the optimizer.

© 2003 COSMIC Software

Invoking the Compiler

-0*>

_p*>

+*>

+debug

+mp

specify optimizer options. Up to 60 options can be speci-
fied. See Appendix D, “Compiler Passes’, for the list of
all accepted options.

specify parser options. Up to 60 options can be specified.
See Appendix D, “Compiler Passes’, for the list of al
accepted options.

create only assembler files and stop. Do not assemble the
files produced.

create only preprocessed files and stop. Do not compile
files produced. Preprocessed output defaults to <file>.p.
The produced files can be compiled as C source files.

specify path for temporary files. The path is a directory
name, not terminated by any directory separator character.

be “verbose’. Before executing acommand, print the com-
mand, along with its arguments, to STDOUT. The default
is to output only the names of each file processed. Each
name is followed by a colon and newline.

do not execute the passes, instead, write to STDOUT the
commands which otherwise would have been performed.

select a predefined compiler option. These options are pre-
defined in the configuration file. You can specify up to 20
compiler options on the command line. The following doc-
uments the available options as provided by the default
configuration file:

produce debug information to be used by the debug utili-
ties provided with the compiler and by any external debug-
ger.

optimize function calls. This option uses ajump table gen-
erated by ct6805 which contains the jump function call to
be used. For more information, see “ Function Call Optimi-
zation” in Chapter 3.

© 2003 COMIC Software Using The Compiler

63

+nocst

+nsh

+rev

+split

+strict

64 Using The Compiler

do not use the .bss section for variables alocated in exter-
na memory. By default, such uninitialized variables are
defined into the .bss section. This option is useful to force
all variables to be grouped into a single section.

output literals and contants in the code section .text instead
of the specific section .const.

do not share memory areas allocated for local variables
and arguments. By default, the linker optimizes the mem-
ory allocation by sharing the memory areas corresponding
to independent functions.

reverse the hitfield filling order. By default, bitfields are
filled from the less significant bit (L SB) towards the most
significant bit (MSB) of a memory cell. If the +rev option
is specified, bitfields are filled from the msb to the Ish.

produce each C function in a separate section, thus allow-
ing the linker to suppress unused functionsiif the -k option
has been specified on at least one segment in the linker
command file. See “Segment Control Options” in Chap-
ter 6

direct the compiler to enforce stronger type checking.

© 2003 COSMIC Software

File Naming Conventions

File Naming Conventions

The programs making up the C cross compiler generate the following
output file names, by default. See the documentation on a specific pro-
gram for information about how to change the default file names
accepted asinput or generated as output.

Program | Input File Name | Output File Name
cp6805 <file>.c <file>.1
€cg6805 <file>.1 <file>.2
06805 <file>.2 <file>.s
error listing <file>.c <file>.err
assembler listing <file>.[c|s] <file>.Is
C header files <file>.h
ca6805 <file>.s <file>.0
source listing <file>.s <file>.Is
clnk <file>.0 name required
chex <file> STDOUT
clabs <file.n05> <files>.la
clib <file> name required
cobj <file> STDOUT
ct6805 <file.h05> jmptab.s
cv695 <file.h05> <file>.695
cvdwarf <file.h05> <file>.elf

© 2003 COMIC Software Using The Compiler 65

Generating Listings

Generating Listings

You can generate listings of the output of any (or al) the compiler
passes by specifying the -I option to cx6805. You can locate the listing
filein adifferent directory by using the -cl option.

The example program provided in the package shows the listing pro-
duced by compiling the C sourcefile acia.c with the -l option:

‘ cx6805 -1 acia.c

Generating an Error File

You can generate afile containing al the error messages output by the
parser by specifying the -e option to cx6805. You can locate the error
file in a different directory by using the -ce option. For example, you
would type:

‘ cx6805 -e prog-c

The error file name is obtained from the source filename by replacing
the .c suffix by the .err suffix.

Generating Jump Table

You can generate ajump table, to optimize the function call, by specify-
ing, first, the command line option -I to the cx6805 compiler, then link
the full application, call the ct6805 utility to produce the jump table,
jmptab.s, and rebuild the full application by specifying the +jmp option
to the cx6805 compiler. For more information, see “Optimize Function
Call” in Chapter 2, and “Function Call Optimization” in Chapter 3.

Return Status

€x6805 returns success if it can process all files successfully. It prints a
message to STDERR and returns failure if there are errors in at least
one processed file.

66 Using The Compiler © 2003 COSMIC Software

Examples

Examples

To echo the names of each program that the compiler runs:

| cx6805 -v file.c |

To save the intermediate files created by the code generator and halt
before the assembler:

| cx6805 -s file.c |

C Library Support

This section describes the facilities provided by the C library. The C
cross compiler for MC68HCO5 includes all useful functions for pro-
grammers writing applications for ROM-based systems.

How C Library Functions are Packaged

The functionsin the C library are packaged in three separate sub-librar-
ies; one for machine-dependent routines (the machine library), one that
does not support floating point (the integer library) and one that pro-
vides full floating point support (the floating point library). If your
application does not perform floating point calculations, you can
decrease its size and increase its runtime efficiency by including only
theinteger library.

Inserting Assembler Code Directly
Assembler instructions can be quoted directly into C source files, and

entered unchanged into the output assembly stream, by use of the
_asm() function. This function is not part of any library as it is recog-
nized by the compiler itself. See “Inserting Inline Assembly Instruc-
tions’ in Chapter 3.

Linking Librarieswith Your Program
If your application requires floating point support, you must specify the
floating point library before the integer library in the linker command
file. Modules common to both libraries will therefore be loaded from
the floating point library, followed by the appropriate modules from the
floating point and integer libraries, in that order.

© 2003 COMIC Software Using The Compiler 67

C Library Support

Integer Library Functions
The following table lists the C library functions in the integer library.

_asm isupper strcmp xmemmove
abs isxdigit strcpy xmemset
atoi labs strcspn Xputs
atol Idiv strlen xstrcat
div memchr strncat xstrchr
eepera memcmp strncmp xstrcmp
getchar memcpy strncpy xstrecpy
gets memmove strpbrk xstrcspn
isalnum memset strrchr xstrlen
isalpha printf strspn xstrncat
iscntrl putchar strstr xstrncmp
isdigit puts strtol xstrncpy
isgraph rand tolower xstrpbrk
islower sprintf toupper xstrrchr
isprint srand xmemchr xstrspn
ispunct strcat xmemcmp xstrstr
isspace strchr xmemcpy xstrtol

Floating Point Library Functions
The following table lists the C library functionsin the float library.

acos cosh log sprintf
asin exp logl0 sqrt
atan fabs modf strtod
atan2 floor pow tan
atof fmod printf tanh
ceil frexp sin

cos ldexp sinh

Common I nput/Output Functions
Two of the functions that perform stream output are included in both the

integer and floating point libraries. The functionalities of the versionsin
the integer library are a subset of the functionalities of their floating
point counterparts. The versions in the integer library cannot print or
manipulate floating point numbers. These functions are: printf, sprintf.

Functions I mplemented as M acros
Two of the functionsin the C library are actually implemented as “mac-

ros’. Unlike other functions, which (if they do not return int) are
declared in header files and defined in a separate object module that is
linked in with your program later, functions implemented as macros are

68 Using The Compiler © 2003 COSMIC Software

C Library Support

defined using #define preprocessor directives in the header file that
declares them. Macros can therefore be used independently of any
library by including the header file that defines and declares them with
your program, as explained below. The functions in the C library that
are implemented as macros are: max and min.

Including Header Files
If your application calls a C library function, you must include the
header file that declares the function at compile time, in order to use the
proper return type and the proper function prototyping, so that al the
expected arguments are properly evaluated. You do this by writing a
preprocessor directive of the form:

#include <header_name>

in your program, where <header_name> is the name of the appropriate
header file enclosed in angle brackets. The required header file should
be included before you refer to any function that it declares.

The names of the header files packaged with the C library and the func-
tions declared in each header are listed below.

<assert.h> - Header file for the assertion macro: assert.

<ctype.h> - Header file for the character functions: isalnum, isalpha,
iscntrl, isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper,
islower, tolower and toupper.

<float.h> - Header file for limit constants for floating point values.

<io.h> - Header file for input-output registers. Each register has an
upper-case hame which matches the standard Motorola definition. Note
that because there is awide range of derivatives, thisfile should be used
as atemplate to derive an accurate file for a given processor.

<limits.h> - Header file for limit constants of the compiler.
<math.h> - Header file for mathematical functions: acos, asin, atan,

atan2, ceil, cos, cosh, exp, fabs, floor, fmod, frexp, Idexp, log, 10g10,
modf, pow, sin, sinh, sgrt, tan and tanh.

© 2003 COMIC Software Using The Compiler 69

Usage of External Memory Pointers

<processor.h> - Header file for inline functions: carry, irg, imask.
<stdbool.h> - Header file for type bool and valuestrue, false.
<stddef.h> - Header file for types: size t, wchar_t and ptrdiff_t.

<stdio.h> - Header file for stream input/output: getchar, gets, printf,
putchar, puts and sprintf.

<stdlib.h> - Header file for general utilities: abs, abort, atof, atoi, atol,
div, exit, labs, Idiv, rand, srand, strtod, strtol and strtoul.

<string.h> - Header file for string functions: memchr, memcmp, mem-
cpy, memmove, memset, strcat, strchr, strcmp, strepy, strcspn, strien,
strncat, strncmp, strncpy, strpbrk, strrchr, strspn and strstr.

Functions returning int - C library functions that return int and can
therefore be called without any header file are: isalnum, isalpha, iscntrl,
isgraph, isprint, ispunct, isspace, isxdigit, isdigit, isupper, islower,
sbreak, tolower and toupper.

Usage of External Memory Pointers

Most of the library functions expect pointers into internal memory
meaning that any pointer arguments is stored on one byte. The printf
and sprintf functions are prototyped to receive the format string as a
@near pointers and should display strings from external memory using
the uppercase S format character. All other functions using pointers are
duplicated using a derived name built by prefixing an origina with the
‘X’ letter. Such functions receive and return if necessary, @near point-
ers. For moreinformation, see “Placing Data Objects in External Mem+-
ory” in Chapter 3.

Descriptions of C Library Functions

The following pages describe each of the functions in the C library in
quick reference format. The descriptions are in alphabetical order by
function name.

The syntax field describes the function prototype with the return type
and the expected arguments, and if any, the header file name where this
function has been declared.

70 Using The Compiler © 2003 COSMIC Software

CLibrary - _asm

asim

Description

Generate inline assembly code
Syntax

‘ _asm(“string constant”, arguments...)
Function

_asm() generates inline assembly code by copying <string constant>
and quoting it into the output assembly code stream. <arguments> are
first evaluated following the usual rulesfor passing arguments. The first
argument is kept in the a register whenever possible, and all other argu-
ments are pushed onto the stack. After the <string constant> code is
output, arguments pushed to the stack are removed before to continue.

For more information, see “Inserting Inline Assembly Instructions’ in
Chapter 3.

Return Value
Nothing, unless _asm() is used in an expression. In that case, normal

return conventions must be followed. See “ Register Usage” in Chapter
3.

Example
The sequence tsx; jsr _main, may be generated by the following call:

_asm(\ttsx\n\tjsr _main\n”);

Note that the string-quoting syntax matches the familiar printf() func-
tion.

Notes

_asm() is not packaged in any library. It is recognized by the compiler
itself.

© 2003 COMIC Software Using The Compiler 71

C Library - abort

abort

Description
Abort program execution

Syntax

#include <stdlib.h>
void abort(void)

Function
abort stops the program execution by calling the exit function which is
placed by the startup module just after the call to the main function.

Return Value
abort never returns.

Example
To abort in case of error:

if (fatal_error)
abort();

See Also

exit

Notes
abort is amacro equivalent to the function name exit.

72 Using The Compiler © 2003 COSMIC Software

C Library - abs

abs

Description
Find absolute value

Syntax

#include <stdlib.h>
int abs(int i)

Function
abs obtains the absolute value of i. No check is made to see that the

result can be properly represented.

Return Value
abs returns the absolute value of i, expressed as an int.

Example
To print out a debit or credit balance:

printf(“balance %d%s\n”, abs(bal), (bal < 0)? “CR” : “7);

See Also
labs, fabs

Notes

abs is packaged in the integer library, and may be implemented as a
builtin function.

© 2003 COMIC Software Using The Compiler 73

C Library - acos

acCos

Description
Arccosine

Syntax

#include <math.h>
double acos(double Xx)

Function
acos computes the angle in radians the cosine of which is x, to full dou-
ble precision.

Return Value
acos returns the closest internal representation to acos(x), expressed as
a double floating value in the range [0, pi]. If X is outside the range
[-1, 1], acos returns zero.

Example
To find the arccosine of x:

theta = acos(x);

See Also

asin, atan, atan2

Notes
acos is packaged in the floating point library.

74 Using The Compiler © 2003 COSMIC Software

CLibrary - asin

asin

Description
Arcsine

Syntax

#include <math.h>
double asin(double x)

Function
asin computes the angle in radians the sine of which is x, to full double
precision.

Return Value
asin returns the nearest internal representation to asin(x), expressed as a
double floating value in the range [-pi/2, pi/2]. If X is outside the range
[-1, 1], asin returns zero.

Example
To compute the arcsine of y:

theta = asin(y);

See Also
acos, atan, atan2

Notes
asin is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 75

C Library - atan

atan

Description
Arctangent

Syntax

#include <math.h>
double atan(double x)

Function
atan computes the angle in radians; the tangent of which is x, atan
computes the angle in radians; the tangent of which is x, to full double
precision.

Return Value
atan returns the nearest internal representation to atan(x), expressed as
adouble floating value in the range [-pi/2, pi/2].

Example
To find the phase angle of avector in degrees:

theta = atan(y/x) * 180.0 / pi;

See Also
acos, asin, atan2

Notes
atan is packaged in the floating point library.

76 Using The Compiler © 2003 COSMIC Software

C Library - atan2

atan?

Description
Arctangent of y/x

Syntax

#include <math.h>
double atan2(double y, double x)

Function
atan2 computes the angle in radians the tangent of which isy/x to full

double precision. If y is negative, the result is negative. If X is negative,
the magnitude of the result is greater than pi/2.

Return Value
atan2 returns the closest internal representation to atan(y/x), expressed

as a double floating value in the range [-pi, pi]. If both input arguments
are zero, atan2 returns zero.

Example
To find the phase angle of avector in degrees:

theta = atan2(y/x) * 180.0/pi;

See Also

acos, asin, atan

Notes
atan2 is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 77

C Library - atof

atof

Description
Convert buffer to double

Syntax

#include <stdlib.h>
double atof(char *nptr)

Function
atof converts the string at nptr into a double. The string is taken as the
text representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is permit-
ted; conversion stops on the first unrecognizable character. Acceptable
inputs match the pattern:

[+[-]d*[.d*][e[+]-]dd*]

whered isany decimal digit and e isthe character ‘€ or ‘E’. No checks
are made against overflow, underflow, or invalid character strings.

Return Value
atof returns the converted double value. If the string has no recogniza-
ble characters, it returns zero.

Example
To read a string from STDIN and convert it to adouble at d:

gets(buf);
d = atof(buf);

See Also
atoi, atol, strtol, strtod

Notes
atof is packaged in the floating point library.

78 Using The Compiler © 2003 COSMIC Software

C Library - atoi

atol

Description
Convert buffer to integer

Syntax

#include <stdlib.h>
int atoi(char *nptr)

Function
atoi convertsthe string at nptr into an integer. The string is taken as the

text representation of a decimal number. Leading whitespace is skipped
and an optional sign is permitted; conversion stops on the first unrecog-
nizable character. Acceptable characters are the decimal digits. If the
stop character is| or L, it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atoi returns the converted integer value. If the string has no recogniza-

ble characters, zero is returned.

Example
Toread a string from STDIN and convertittoanint at i:

gets(buf);
i = atoi(buf);

See Also
atof, atol, strtol, strtod

Notes
atoi is packaged in the integer library.

© 2003 COMIC Software Using The Compiler

79

C Library - atol

atol

Description
Convert buffer to long

Syntax

#include <stdlib.h>
long atol (char *nptr)

Function
atol convertsthe string at nptr into along integer. The string is taken as
the text representation of a decimal number. Leading whitespace is
skipped and an optional sign is permitted; conversion stops on the first
unrecognizable character. Acceptable characters are the decimal digits.
If the stop character is| or L it is skipped over.

No checks are made against overflow or invalid character strings.

Return Value
atol returns the converted long integer. If the string has no recognizable
characters, zero isreturned.

Example
To read astring from STDIN and convert ittoalong |:

gets(buf);
1 = atol(buf);

See Also
atof, atoi, strtol, strtod

Notes
atol is packaged in the integer library.

80 Using The Compiler © 2003 COSMIC Software

C Library - carry

carry

Description
Test or get the carry bit

Syntax

#include <processor.h>
@inline char carry(void)

Function
carry isainline function allowing to test or get the value of the carry

bit. When used in an if construct, this function expands directly to abcc
or bcs instruction. When used in an expression, it expands in order to
build in the a register the value 0 or 1 depending on the carry bit value.

Return Value
carry returns 0 or 1 in the a register if such avalue is needed.
Example
low <<= 1; produces Isl _low
if (carry(Q)) bcc L1
++high; inc _high
L1:
low <<= 1; produces Isl _low
high = carry(Q clra
rola
sta _high
Notes

carry is a inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

© 2003 COMIC Software Using The Compiler

81

C Library - cell

call

Description
Round to next higher integer

Syntax

#include <math.h>
double ceil(double x)

Function
ceil computes the smallest integer greater than or equal to Xx.

Return Value
ceil returns the smallest integer greater than or equal to x, expressed as
adouble floating value.

Example
X ceil(x)
5.1 6.0
5.0 5.0
0.0 0.0
-5.0 -5.0
-5.1 -5.0
See Also
floor
Notes

ceil is packaged in the floating point library.

82 Using The Compiler © 2003 COSMIC Software

C Library - cos

Description
Cosine

Syntax

COS

#include <math.h>
double cos(double x)

Function

cos computes the cosine of x, expressed in radians, to full double preci-
sion. If the magnitude of x istoo large to contain a fractional quadrant

part, the value of cosis 1.

Return Value

cos returns the nearest internal representation to cos(x) in the range [0,
pi], expressed as adouble floating value. A large argument may return a

meaningless value.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);
See Also
sin, tan
Notes

cosis packaged in the floating point library.

© 2003 COSMIC Software

Using The Compiler 83

C Library - cosh
cosh

Description
Hyperbolic cosine

Syntax

#include <math.h>
double cosh(double x)

Function
cosh computes the hyperbolic cosine of x to full double precision.

Return Value
cosh returns the nearest internal representation to cosh(x) expressed as a
double floating value. If the result is too large to be properly repre-
sented, cosh returns zero.

Example
To use the Moivre's theorem to compute (cosh x + sinh x) to the nth
power:
demoivre = cosh(n * x) + sinh(n * x);
See Also

exp, sinh, tanh

Notes
cosh is packaged in the floating point library.

84 Using The Compiler © 2003 COSMIC Software

C Library - div

div

Description
Divide with quotient and remainder

Syntax

#include <stdlib.h>
div_t div(int numer, int denom)

Function
div dividesthe integer numer by the integer denom and returns the quo-

tient and the remainder in a structure of type div_t. The field quot con-
tains the quotient and the field rem contains the remainder.

Return Value
div returns a structure of type div_t containing both quotient and

remainder.

Example
To get minutes and seconds from adelay in seconds:

div_t result;
result = div(time, 60);
min result.quo;
sec result.rem;

See Also
Idiv

Notes
div is packaged in the integer library.

© 2003 COMIC Software Using The Compiler

85

C Library - eepera
eepera

Description
Erase the full eeprom space

Syntax

void eepera(void)

Function
eeper a erases the full eeprom space with the global erase sequence. It
does not erase the config register.

Return Value
Nothing.

Example
To erase the full eeprom space:

eepera();

See Also

Notes
eepera is packaged in the machine library.

86 Using The Compiler © 2003 COSMIC Software

C Library - exit

exit

Description
Exit program execution

Syntax

#include <stdlib.h>
void exit(int status)

Function
exit stops the execution of a program by switching to the startup mod-
ule just after the cal to the main function. The status argument is not
used by the current implementation.

Return Value
exit never returns.

Example
To exit in case of error:

if (fatal_error)
exit();

See Also
abort

Notes
exit isin the startup module.

© 2003 COMIC Software Using The Compiler 87

C Library - exp

exp

Description
Exponential

Syntax

#include <math.h>
double exp(double x)

Function
exp computes the exponential of x to full double precision.

Return Value
exp returns the nearest internal representation to exp x, expressed as a
double floating value. If the result is too large to be properly repre-
sented, exp returns zero.

Example
To compute the hyperbolic sine of x:

sinh = (exp(xX) - exp(-x)) 7/ 2.0;

See Also
log

Notes
exp is packaged in the floating point library.

88 Using The Compiler © 2003 COSMIC Software

C Library - fabs

Description

fabs

Find double absolute value

Syntax

#include <math.h>
double fabs(double x)

Function

fabs obtains the absolute value of x.

Return Value

fabs returns the absolute value of x, expressed as a double floating

value.

Example
X

w o ul
~N OO

See Also
abs, labs

Notes

fabs(x)

woum
~N O o

fabsis packaged in the floating point library.

© 2003 COSMIC Software

Using The Compiler 89

C Library - floor

floor

Description
Round to next lower integer

Syntax

#include <math.h>
double floor(double x)

Function
floor computes the largest integer less than or equal to x.

Return Value
floor returns the largest integer less than or equal to x, expressed as a
double floating value.

Example
X floor(x)
5.1 5.0
5.0 5.0
0.0 0.0
-5.0 -5.0
-5.1 -6.0
See Also
cell
Notes

floor is packaged in the floating point library.

90 Using The Compiler © 2003 COSMIC Software

C Library - fmod

fmod

Description
Find double modulus

Syntax

#include <math.h>
double fmod(double x, double y)

Function
fmod computes the floating point remainder of x / y, to full double pre-

cision. The return value of f is determined using the formula:
f=x-i*y

wherei issomeinteger, f isthe same sign as x, and the absol ute val ue of
f isless than the absolute value of y.

Return Value
fmod returns the value of f expressed as a double floating value. If y is

zero, fmod returns zero.

Example
X y fmod(x, y)
5.5 5.0 0.5
5.0 5.0 0.0
0.0 0.0 0.0
-5.5 5.0 -0.5

Notes
fmod is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 91

C Library - frexp

frexp

Description
Extract fraction from exponent part

Syntax

#include <math.h>
double frexp(double val, int *exp)

Function
frexp partitions the double at val, which should be non-zero, into afrac-
tionintheinterval [1/2, 1) times two raised to an integer power. It then
delivers the integer power to *exp, and returns the fractiona portion as
the value of the function. The exponent is generally meaningless if val
is zero.

Return Value
frexp returns the power of two fraction of the double at val asthe return
value of the function, and writes the exponent at *exp.

Example
To implement the sgrt(x) function:

double sqgrt(double x)
{

extern double newton(double);
int n;

x = frexp(x, &n);
X = newton(x);

if (n&1)
X *= SQRT2;
return (Ildexp(x, n 7/ 2));
3
See Also
Idexp
Notes

frexp is packaged in the floating point library.

92 Using The Compiler © 2003 COSMIC Software

C Library - getchar

getchar

Description
Get character from input stream

Syntax

#include <stdio.h>
int getchar(void)

Function
getchar obtains the next input character, if any, from the user supplied
input stream. This user must rewrite this function in C or in assembly
language to provide an interface to the input mechanism of the C
library.

Return Value
getchar returns the next character from the input stream. If end of file
(break) is encountered, or aread error occurs, getchar returns EOF.

Example
To copy characters from the input stream to the output stream:

while ((c = getchar()) != EOF)
putchar(c);

See Also
putchar

Notes

getchar is packaged in the integer library, and is by default using the
first serial port SCI 1.

© 2003 COMIC Software Using The Compiler 93

C Library - gets
gets

Description
Get atext line from input stream

Syntax

#include <stdio.h>
char *gets(char *s)

Function
gets copies characters from the input stream to the buffer starting at s.
Characters are copied until a newline is reached or end of file is
reached. If a newline is reached, it is discarded and a NUL is written
immediately following the last character read into s.

gets uses getchar to read each character.

Return Value
getsreturns sif successful. If end of file is reached, gets returns NULL.
If a read error occurs, the array contents are indeterminate and gets
returns NULL.

Example
To copy input to output, line by line:

while (puts(gets(buf)))
See Also
puts

Notes
Thereis no assured limit on the size of the line read by gets.

gets is packaged in the integer library.

94 Using The Compiler © 2003 COSMIC Software

C Library - imask

Imask

Description
Test the interrupt mask bit

Syntax

#include <processor.h>
@inline char imask(void)

Function
imask is a inline function alowing to test the interupt mask bit. The
imask function can only be used in an if construct. This function
expands directly to abms or bmc instruction.

Return Value
None.
Example
if (imask()) produces bmc L1
++high; inc _high
L1:
if (Yimask() produces bms L1
++high inc _high
L1:
Notes

imask is a inline function and then is not defined in any library. It is
therefore not possible to take its address. For more information, see
“Inline Function” in Chapter 3.

© 2003 COMIC Software Using The Compiler 95

C Library - irq
Irg
Description

Test the interrupt line level

Syntax

#include <processor.h>
@inline char irq(void)

Function
irg is ainline function allowing to test the interupt line level. The irq
function can only be used in an if construct. This function expands
directly to abih or bil instruction.

Return Value
None.
Example
if (irqQ) produces bil L1
++high; inc _high
L1:
if (1irgQ produces bih L1
++high inc _high
L1:
Notes

irg isainline function and then is not defined in any library. It is there-
fore not possible to take its address. For more information, see “Inline
Function” in Chapter 3.

96 Using The Compiler © 2003 COSMIC Software

C Library - isalnum

Isalnum

Description
Test for aphabetic or numeric character

Syntax

#include <ctype.h>
int isalnum(char c)

Function
isalnum tests whether ¢ is an aphabetic character (either upper or

lower case), or adecimal digit.

Return Value
isalnum returns nonzero if the argument is an alphabetic or numeric

character; otherwise the value returned is zero.

Example
Totest for avalid Cidentifier:

if (isalpha(*s) || *s == "_")
for (++s; isalnum(*s) || *s == "_"; ++s)

See Also
isalpha, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalnumis packaged in the integer library.

© 2003 COMIC Software Using The Compiler 97

C Library - isalpha

Isalpha

Description
Test for aphabetic character

Syntax

#include <ctype.h>
int isalpha(char c)

Function
isalpha tests whether c is an aphabetic character, either upper or lower
case.

Return Value
isalpha returns nonzero if the argument is an a phabetic character. Oth-
erwise the value returned is zero.

Example
To find the end points of an alphabetic string:

while (*first && lisalpha(*first))

++first;
for (last = first; isalpha(*last); ++last)

See Also
isalnum, isdigit, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isalpha is packaged in the integer library.

98 Using The Compiler © 2003 COSMIC Software

C Library - iscntrl

lscntrl

Description
Test for control character

Syntax

#include <ctype.h>
int iscntrl(char c)

Function
iscntrl tests whether c is a delete character (0177 in ASCII), or an ordi-

nary control character (lessthan 040 in ASCII).

Return Value
iscntrl returns nonzero if cis acontrol character; otherwise the valueis

Z€ero.

Example
To map control characters to percent signs:

for (G *s; ++s)
if (iscentrl(*s))
*s = "%T;

See Also
isgraph, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

iscntrl is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 99

C Library - isdigit
isdigit

Description
Test for digit

Syntax

#include <ctype.h>
int isdigit(char c)

Function
isdigit tests whether cisadecimal digit.

Return Value
isdigit returns nonzero if c is a decima digit; otherwise the value
returned is zero.

Example
To convert adecimal digit string to a number:

for (sum = 0; isdigit(*s); ++s)
sum = sum * 10 + *s - "0°;

See Also
isalnum, isalpha, islower, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isdigit is packaged in the integer library.

100 Using The Compiler © 2003 COSMIC Software

C Library - isgraph

Isgraph

Description
Test for graphic character

Syntax

#include <ctype.h>
int isgraph(char c)

Function
isgraph tests whether c is a graphic character; i.e. any printing charac-
ter except a space (040 in ASCII).

Return Value
isgraph returns nonzero if ¢ is a graphic character. Otherwise the value

returned is zero.

Example
To output only graphic characters:

for (G *s; ++s)

if (isgraph(*s))
putchar(*s);

See Also
iscntrl, isprint, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isgraph is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 101

C Library - islower

ISlower

Description
Test for lowercase character

Syntax

#include <ctype.h>
int islower(char c)

Function
islower tests whether c is alowercase alphabetic character.

Return Value
idower returns nonzero if ¢ is a lowercase character; otherwise the
value returned is zero.

Example
To convert to uppercase:

if (islower(c))

c += "A" - "a"; /* also see toupper() */

See Also
isalnum, isalpha, isdigit, isupper, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

islower is packaged in the integer library.

102 Using The Compiler © 2003 COSMIC Software

C Library - isprint

ISprint

Description
Test for printing character

Syntax

#include <ctype.h>
int isprint(char c)

Function
isprint tests whether c is any printing character. Printing characters are
al characters between a space (040 in ASCII) and atilde ‘'~ character
(0176 in ASCII).

Return Value
isprint returns nonzero if ¢ is a printing character; otherwise the value
returned is zero.

Example
To output only printable characters:

for (; *s; ++s)

if (isprint(*s))
putchar(*s);

See Also
iscntrl, isgraph, ispunct, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isprint is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 103

C Library - ispunct
Ispunct

Description
Test for punctuation character

Syntax

#include <ctype.h>
int ispunct(char c)

Function
ispunct tests whether c is a punctuation character. Punctuation charac-

tersinclude any printing character except space, a digit, or aletter.

Return Value
ispunct returns nonzero if ¢ is a punctuation character; otherwise the
valuereturned is zero.

Example
To collect all punctuation charactersin a string into a buffer:

for (i = 0; *s; ++s)
if (ispunct(*s))
buf[i++] = *s;

See Also
iscntrl, isgraph, isprint, isspace

Notes
If the argument is outside the range [-1, 255], the result is undefined.

ispunct is packaged in the integer library.

104 Using The Compiler © 2003 COSMIC Software

C Library - isspace

ISspace

Description
Test for whitespace character

Syntax

#include <ctype.h>
int isspace(char c)

Function
isspace tests whether ¢ is awhitespace character. Whitespace characters

are horizontal tab (‘\t’), newline (‘\n’), vertical tab (‘\v"), form feed
(‘\f*), carriage return (*\r’), and space (* ').

Return Value
isspace returns nonzero if ¢ is a whitespace character; otherwise the

value returned is zero.

Example
To skip leading whitespace:

while (isspace(*s))
++S;

See Also
iscntrl, isgraph, isprint, ispunct

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isspace is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 105

C Library - isupper

Isupper
Description
Test for uppercase character

Syntax

‘ int isupper(char c)

Function
isupper tests whether ¢ is an uppercase al phabetic character.

Return Value
isupper returns nonzero if ¢ is an uppercase character; otherwise the
valuereturned is zero.

Example
To convert to lowercase:

if (isupper(c))
c += "a" - "A"; /* also see tolower() */

See Also

isalnum, isalpha, isdigit, islower, isxdigit, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isupper is packaged in the integer library.

106 Using The Compiler © 2003 COSMIC Software

C Library - isxdigit

Isxdigit

Description
Test for hexadecimal digit

Syntax

#include <ctype.h>
int isxdigit(char c)

Function
isxdigit tests whether ¢ is a hexadecima digit, i.e. in the set

[0123456789abcdef ABCDEF].

Return Value
isxdigit returns nonzero if ¢ is a hexadecimal digit; otherwise the value

returned is zero.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)
sum = sum * 10 + *s - "0";
else
sum = sum * 10 + tolower(*s) + (10 - "a");

See Also
isalnum, isalpha, isdigit, islower, isupper, tolower, toupper

Notes
If the argument is outside the range [-1, 255], the result is undefined.

isxdigit is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 107

II%!I C Library - labs

labs

Description
Find long absolute value

Syntax

#include <stdlib.h>
long labs(long 1)

Function
|abs obtains the absolute value of |. No check is made to see that the

result can be properly represented.

Return Value
labs returns the absolute value of |, expressed as an long int.

Example
To print out a debit or credit balance:

printf(“balance %ld%s\n”,labs(bal),(bal < 0) ? “CR” : “7);

See Also
abs, fabs

Notes
labsis packaged in the integer library.

108 Using The Compiler © 2003 COSMIC Software

C Library - Idexp

ldexp

Description
Scal e double exponent

Syntax

#include <math.h>
double Idexp(double x, Int exp)

Function
Idexp multiplies the double x by two raised to the integer power exp.

Return Value
Idexp returns the double result x * (1 << exp) expressed as a double
floating value. If arange error occurs, Idexp returns HUGE_VAL .

Example
X exp Idexp(x, exp)
1.0 1 2.0
1.0 0 1.0
1.0 -1 0.5
0.0 0 0.0
See Also
frexp, modf
Notes

Idexp is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 109

C Library - ldiv
Idiv

Description
Long divide with quotient and remainder

Syntax

#include <stdlib.h>
Idiv_t Idiv(long numer, long denom)

Function
Idiv divides the long integer numer by the long integer denom and

returns the quotient and the remainder in a structure of typeldiv_t. The
field quot contains the quotient and the field rem contains the remain-
der.

Return Value
Idiv returns a structure of type Idiv_t containing both quotient and

remainder.

Example
To get minutes and seconds from a delay in seconds:

Idiv_t result;
result = ldiv(time, 60L);
min = result._quo;
sec = result.rem;

See Also
div

Notes
Idiv is packaged in the integer library.

110 Using The Compiler © 2003 COSMIC Software

C Library - log

log

Description
Natural logarithm

Syntax

#include <math.h>
double log(double x)

Function
log computes the natural logarithm of x to full double precision.

Return Value
log returns the closest internal representation to log(x), expressed as a
double floating value. If the input argument is less than zero, or is too
large to be represented, log returns zero.

Example
To compute the hyperbolic arccosine of x:

arccosh = log(x + sqrt(x * x - 1));

See Also
exp

Notes
log is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 111

C Library - 1og10
log10

Description
Common logarithm

Syntax

#include <math.h>
double logl0(double x)

Function
log10 computes the common log of x to full double precision by com-

puting the natural log of x divided by the natural log of 10. If the input
argument is less than zero, a domain error will occur. If the input argu-
ment is zero, arange error will occur.

Return Value
logl10 returns the nearest internal representation to 1og10 X, expressed

as a double floating value. If the input argument is less than or equal to
zero, 1ogl10 returns zero.

Example
To determine the number of digits in x, where x is a positive integer

expressed as adouble:
ndig = loglo(x) + 1;

See Also
log

Notes
logl0 is packaged in the floating point library.

112 Using The Compiler © 2003 COSMIC Software

C Library - max

max

Description
Test for maximum

Syntax

#include <stdlib.h>
max(a,b)

Function
max obtains the maximum of its two arguments, a and b. Since max is

implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
max is a numerical rvalue of the form ((a< b) ? b : a), suitably paren-

thesized.

Example
To set anew maximum level:

hiwater = max(hiwater, level);

See Also

min

Notes
max is an extension to the proposed ANSI C standard.

max is amacro declared in the <stdlib.h> header file. You can useit by
including <stdlib.h> with your program. Because it is a macro, max
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be evaluated other than once. max
may also be implemented as a builtin function.

© 2003 COMIC Software Using The Compiler 113

C Library - memchr

memchr

Description
Scan buffer for character

Syntax

#include <string.h>
void *memchr(void *s, char c, unsigned char n)

Function
memchr looks for the first occurrence of a specific character cinann

character buffer starting at s.

Return Value
memchr returns a pointer to the first character that matches ¢, or NULL

if no character matches.

Example
To map keybuf[] charactersinto subst[] characters:

if ((t = memchr(keybuf, *s, KEYSI1Z)) I= NULL)
*s = subst[t - keybuf];

See Also
strchr, strespn, strpbrk, strrchr, strspn

Notes
memchr is packaged in the integer library.

114 Using The Compiler © 2003 COSMIC Software

C Library - memcmp

memcmp

Description
Compare two buffers for lexical order

Syntax

#include <string.h>
void memcmp(void *sl1l, void *s2, unsigned char n)

Function
memcmp compares two text buffers, character by character, for lexical

order in the character collating sequence. The first buffer starts at s1,
the second at s2; both buffers are n characters long.

Return Value
memcmp returns a short integer greater than, equal to, or less than zero,

according to whether sl is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include” in name:

if (memcmp(name, “include”, 7) == 0)
doinclude(Q);

See Also
stremp, strncmp

Notes
memcmp is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 115

C Library - memcpy

memcpy

Description
Copy one buffer to another

Syntax

#include <string.h>
void *memcpy(void *sl1, void *s2, unsigned char n)

Function
memcpy copies the first n characters starting at location s2 into the

buffer beginning at s1.

Return Value
memcpy returns sl.

Example
To place “first string, second string” in buff]:

memcpy(buf, “first string”, 12);
memcpy(buf + 13, “, second string”, 15);

See Also
strcpy, strncpy

Notes
memcpy is packaged in the integer library.

116 Using The Compiler © 2003 COSMIC Software

C Library - memmove

memimove

Description
Copy one buffer to another

Syntax

#include <string.h>
void *memmove(void *sl1, void *s2, unsigned char n)

Function
memmove copies the first n characters starting at location s2 into the

buffer beginning at s1. If the two buffers overlap, the function performs
the copy in the appropriate sequence, so the copy is not corrupted.

Return Value
memmove returns si.

Example
To shift an array of characters:

memmove (buf, &buf[5], 10);

See Also
memcpy

Notes
memmove is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 117

C Library - memset

memset

Description
Propagate fill character throughout buffer

Syntax

#include <string.h>
void *memset(void *s, char c, unsigned char n)

Function
memset floods the n character buffer starting at s with fill character c.

Return Value
memset returns s.

Example
To flood a 512-byte buffer with NULSs:

memset(buf, "\0", BUFSI1Z);

Notes
memset is packaged in the integer library.

118 Using The Compiler © 2003 COSMIC Software

C Library - min

min

Description
Test for minimum

Syntax

#include <stdlib.h>
min(a, b)

Function
min obtains the minimum of its two arguments, a and b. Since min is

implemented as a C preprocessor macro, its arguments can be any
numerical type, and type coercion occurs automatically.

Return Value
min is a numerical rvalue of the form ((a < b) ? a: b), suitably paren-

thesized.

Example
To set anew minimum level:

nmove = min(space, size);

See Also
max

Notes
min is an extension to the ANSI C standard.

min is amacro declared in the <stdlib.h> header file. You can use it by
including <stdlib.h> with your program. Because it is a macro, min
cannot be called from non-C programs, nor can its address be taken.
Arguments with side effects may be eval uated more than once. min may
also be implemented as a builtin function.

© 2003 COMIC Software Using The Compiler 119

C Library - modf

modf

Description
Extract fraction and integer from double

Syntax

#include <math.h>
double modf(double val, double *pd)

Function
modf partitions the double val into an integer portion, which is deliv-
ered to *pd, and a fractional portion, which is returned as the value of
the function. If the integer portion cannot be represented properly in an
int, the result is truncated on the left without complaint.

Return Value
modf returns the signed fractional portion of val as a double floating
value, and writes the integer portion at * pd.

Example
val *pd modf(val, *pd)

5.1 5 0.1
5.0 5 0.0
4.9 4 0.9
0.0 0 0.0
-1.4 -1 -0.4

See Also

frexp, dexp
Notes

modf is packaged in the floating point library.

120 Using The Compiler © 2003 COSMIC Software

C Library - pow

pow

Description
Raise x to the y power

Syntax

#include <math.h>
double pow(double x, double y)

Function
pow computes the value of x raised to the power of y.

Return Value
pow returns the value of x raised to the power of y, expressed as a dou-

ble floating value. If x is zero and y is less than or equal to zero, or if x
isnegative and y is not an integer, pow returns zero.

Example
X y pow(x, y)

2.0 2.0 4.0

2.0 1.0 2.0

2.0 0.0 1.0

1.0 any 1.0

0.0 -2.0 0

-1.0 2.0 1.0

-1.0 2.1 0
See Also
exp

Notes

pow is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 121

C Library - printf
printf

Description
Output formatted arguments to stdout

Syntax

#include <stdio.h>
int printf(@near char *fmt, ...)

Function
printf writes formatted output to the output stream using the format
string at fmt and the arguments specified by ..., as described below.

printf uses putchar to output each character.

Format Specifiers

The format string at fmt consists of literal text to be output, interspersed
with conversion specifications that determine how the arguments are to
be interpreted and how they are to be converted for output. If there are
insufficient arguments for the format, the results are undefined. If the
format is exhausted while arguments remain, the excess arguments are
evaluated but otherwise ignored. printf returns when the end of the for-
mat string is encountered.

Each <conversion specification> is started by the character ‘%’. After
the ‘%', the following appear in sequence:

<flags> - zero or more which modify the meaning of the conversion
specification.

<field width> - adecima number which optionally specifies amini-
mum field width. If the converted value has fewer characters than the
field width, it is padded on the left (or right, if the left adjustment flag
has been given) to the field width. The padding iswith spaces unlessthe
field width digit string starts with zero, in which case the padding is
with zeros.

122 Using The Compiler © 2003 COSMIC Software

C Library - printf

<precision> - a decimal number which specifies the minimum
number of digits to appear for d, i, 0, u, X, and X conversions, the
number of digitsto appear after the decimal point for e, E, and f conver-
sions, the maximum number of significant digits for the g and G con-
versions, or the maximum number of characters to be printed from a
string in an s conversion. The precision takes the form of a period fol-
lowed by adecimal digit string. A null digit string is treated as zero.

h - optionally specifies that the following d, i, 0, u, X, or X conversion
character appliesto ashort int or unsigned short int argument (the argu-
ment will have been widened according to the integral widening con-
versions, and its value must be cast to short or unsigned short before
printing). It specifies a short pointer argument if associated with the p
conversion character. If an h appears with any other conversion charac-
ter, itisignored.

| - optionally specifies that the d, i, o0, u, X, and X conversion character
appliesto along int or unsigned long int argument. It specifiesalong or
far pointer argument if used with the p conversion character. If the |
appears with any other conversion character, it isignored.

L - optionally specifies that the following e, E, f, g, and G conversion
character applies to along double argument. If the L appears with any
other conversion character, it isignored.

<conver sion character > - character that indicates the type of con-
version to be applied.

A field width or precision, or both, may be indicated by an asterisk "*'
instead of a digit string. In this case, an int argument supplies the field
width or precision. The arguments supplying field width must appear
before the optional argument to be converted. A negative field width
argument istaken as a - flag followed by a positive field width. A nega-
tive precision argument is taken as if it were missing.

The <flags> field is zero or more of the following:

Space - aspace will be prepended if the first character of a signed con-
version is not asign. This flag will be ignored if space and + flags are
both specified.

© 2003 COMIC Software Using The Compiler 123

C Library - printf

- result isto be converted to an “alternate form”. For ¢, d, i, s, and u
conversions, the flag has no effect. For o conversion, it increases the
precision to force the first digit of the result to be zero. For p, x and X
conversion, a non-zero result will have Ox or OX prepended to it. For
e E, f, g, and G conversions, the result will contain a decimal point,
even if no digits follow the point. For g and G conversions, trailing
zeros will not be removed from the result, as they normally are. For p
conversion, it designates hexadecimal output.

+ - result of signed conversion will begin with a plus or minus sign.
- - result of conversion will be |eft justified within the field.

The <conversion character> is one of the following:

% -a‘%’ isprinted. No argument is converted.

C - the char argument is converted to a character and printed.

d, i, 0, u, X, X - theint argument is converted to signed decimal (d or
i), unsigned octal (0), unsigned decimal (u), or unsigned hexadecimal
notation (x or X); the letters abcdef are used for x conversion and the
letters ABCDEF are used for X conversion. The precision specifies the
minimum number of digits to appear; if the value being converted can
be represented in fewer digits, it will be expanded with leading zeros.
The default precision is 1. The result of converting a zero value with
precision of zero is no characters.

e, E - the double argument is converted in the style [-]d.ddde+dd,
where there is one digit before the decimal point and the number of dig-
its after it is equal to the precision. If the precision is missing, six digits
are produced; if the precision is zero, no decimal point appears. The E
format code will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits. However, if
the magnitude to be printed is greater than or equal to 1E+100, addi-
tional exponent digits will be printed as necessary.

f - the double argument is converted to decimal notation in the style
[-]ddd.ddd, where the number of digits following the decimal point is
equal to the precision specification. If the precision is missing, it is

124 Using The Compiler © 2003 COSMIC Software

C Library - printf

taken as 6. If the precision is explicitly zero, no decimal point appears.
If adecimal point appears, at least one digit appears beforeit.

0, G - the double argument is printed in style f or e (or in style E in the
case of a G format code), with the precision specifying the number of
significant digits. The style used depends on the value converted; style
ewill be used only if the exponent resulting from the conversion is less
than -4 or greater than the precision. Trailing zeros are removed from
the result; adecimal point appears only if it isfollowed by a digit.

N - the argument is taken to be an int * pointer to an integer into which
iswritten the number of characterswritten to the output stream so far by
thiscall to printf. No argument is converted.

P - the argument is taken to be avoid * pointer to an object. The value
of the pointer is converted to a sequence of printable characters, and
printed as a hexadecimal number with the number of digits printed
being determined by the field width.

S, S- the argument istaken to be achar * pointer to astring. The string
islocated in internal memory if sis specified, and in external memory is
S is specified. Characters from the string are written up to, but not
including, the terminating NUL, or until the number of characters indi-
cated by the precision are written. If the precision ismissing, it istaken
to be arbitrarily large, so al characters before the first NUL are printed.

If the character after '%" is not avalid conversion character, the behav-
ior isundefined.

If any argument is or pointsto an aggregate (except for an array of char-
acters using %s conversion or any pointer using %p conversion),
unpredictable results will occur.

A nonexistent or small field width does not cause truncation of afield;
if the result is wider than the field width, the field is expanded to con-
tain the conversion result.

Return Value

printf returns the number of characters transmitted, or a negative
number if awrite error occurs.

© 2003 COMIC Software Using The Compiler 125

C Library - printf

Notes
A cal with more conversion specifiers than argument variables will
cause unpredictable results.

Example
To print arg, which is adouble with the value 5100.53:

printf(“%8.2A\n”, arg);
printf(“%*.*f\n”, 8, 2, arg);

both forms will output: 05100.53

See Also
sprintf

Notes
printf is packaged in both the integer library and the floating point
library. The functionality of the integer only version of printf is a subset
of the functionality of the floating point version. The integer only ver-
sion cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of printf, the following conversion
specifiersareinvalid: e, E, f, gand G. The L modifier isalso invalid.

If printf encounters an invalid conversion specifier, the invalid specifier
isignored and no special message is generated.

126 Using The Compiler © 2003 COSMIC Software

C Library - putchar

putchar

Description
Put a character to output stream

Syntax

#include <stdio.h>
int putchar(char c)

Function
putchar copies c to the user specified output stream.

You must rewrite putchar in either C or assembly language to provide
an interface to the output mechanism to the C library.

Return Value
putchar returns c. If awrite error occurs, putchar returns EOF.

Example
To copy input to output:

while ((c = getchar()) != EOF)
putchar(c);

See Also
getchar

Notes

putchar is packaged in the integer library, and is by default using the
first serial port SCI 1.

© 2003 COMIC Software Using The Compiler 127

C Library - puts
puts

Description
Put atext line to output stream

Syntax

#include <stdio.h>
int puts(char *s)

Function
puts copies characters from the buffer starting at s to the output stream

and appends a newline character to the output stream.

puts uses putchar to output each character. The terminating NUL is not
copied.

Return Value
puts returns zero if successful, or else nonzero if awrite error occurs.

Example
To copy input to output, line by line:

while (puts(gets(buf)))

See Also
gets

Notes
putsis packaged in the integer library.

128 Using The Compiler © 2003 COSMIC Software

C Library - rand

rand

Description
Generate pseudo-random number

Syntax

#include <stdlib.h>
int rand(void)

Function
rand computes successive pseudo-random integers in the range

[0, 32767], using alinear multiplicative algorithm which has a period of
2 raised to the power of 32.

Example
int dice(Q)

{
return (randQ) % 6 + 1);

}

Return Value
rand returns a pseudo-random integer.

See Also
srand

Notes
rand is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 129

CLibrary - sin

sin

Description
Sin

Syntax

#include <math.h>
double sin(double x)

Function
sin computes the sine of X, expressed in radians, to full double preci-
sion. If the magnitude of x istoo large to contain a fractional quadrant
part, the value of sinisO.

Return Value
sin returns the closest internal representation to sin(x) in the range
[-pi/2, pi/2], expressed as a double floating value. A large argument
may return a meaningless result.

Example
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);
See Also
cos, tan
Notes

sin is packaged in the floating point library.

130 Using The Compiler © 2003 COSMIC Software

C Library - sinh

sinh

Description
Hyperbolic sine

Syntax

#include <math.h>
double sinh(double Xx)

Function
sinh computes the hyperbolic sine of x to full double precision.

Return Value
sinh returns the closest internal representation to sinh(x), expressed as a

double floating value. If the result is too large to be properly repre-
sented, sinh returns zero.

Example
To obtain the hyperbolic sine of complex z:

typedef struct
{
double x, iy;
}complex;

complex z;

z.x = sinh(z.x) * cos(z.iy);
z.1y = cosh(z.x) * sin(z.iy);

See Also
cosh, exp, tanh

Notes
sinh is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 131

C Library - sprintf
sprintf

Description
Output arguments formatted to buffer

Syntax

#include <stdio.h>
int sprintf(char *s, @near char fmt, ...)

Function
sprintf writes formatted to the buffer pointed at by s using the format

string at fmt and the arguments specified by ..., in exactly the same way
as printf. See the description of the printf function for information on
the format conversion specifiers. A NUL character is written after the
last character in the buffer.

Return Value
sprintf returns the numbers of characters written, not including the ter-

minating NUL character.

Example
To format adouble at d into buf:

sprintf(buf, “%10f\n”, d);

See Also
printf

Notes
sprintf is packaged in both the integer library and the floating point

library. The functionality of the integer only version of sprintf is a sub-
set of the functionality of the floating point version. The integer only
version cannot print or manipulate floating point numbers. If your pro-
grams call the integer only version of sprintf, the following conversion
specifiersareinvalid: e, E, f, gand G. The L flagisaso invalid.

132 Using The Compiler © 2003 COSMIC Software

C Library - sgrt

sgrt

Description
Real square root

Syntax

#include <math.h>
double sqgrt(double Xx)

Function
sqrt computes the square root of x to full double precision.

Return Value
sgrt returns the nearest internal representation to sgrt(x), expressed as a
double floating value. If x is negative, sgrt returns zero.

Example
To use sgrt to check whether n > 2 isaprime number:

if (1(n & 01))
return (NOTPRIME);
sq = sqrt((double)n);
for (div = 3; div <= sq; div += 2)
if (I(n % div))
return (NOTPRIME);
return (PRIME);

Notes
sgrt is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 133

C Library - srand

srand

Description
Seed pseudo-random number generator

Syntax

#include <stdlib.h>
void srand(unsigned char nseed)

Function
srand uses nseed as a seed for a new sequence of pseudo-random num-
bers to be returned by subsequent calls to rand. If srand is called with
the same seed value, the sequence of pseudo-random numbers will be
repeated. Theinitial seed value used by rand and srand is 0.

Return Value
Nothing.

Example
To set up a new sequence of random numbers:

srand(103);

See Also

rand

Notes
srand is packaged in the integer library.

134 Using The Compiler © 2003 COSMIC Software

C Library - strcat

Strcat

Description
Concatenate strings

Syntax

#include <string.h>
char *strcat(char *sl1l, char *s2)

Function
strcat appends a copy of the NUL terminated string at s2 to the end of

the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. A terminating NUL is always appended to sl.

Return Value
strcat returns s1.

Example
To place the strings “first string, second string” in buff]:

buf[0] = "\0";

strcpy(buf, “first string”);
strcat(buf, “, second string”);

See Also
strncat

Notes
There is no way to specify the size of the destination area to prevent
storage overwrites.

strcat is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 135

C Library - strchr
strchr

Description
Scan string for first occurrence of character

Syntax

#include <string.h>
char *strchr(char *sl1l, char c)

Function
strchr looks for the first occurrence of a specific character cin aNUL
terminated target string s.

Return Value
strchr returns a pointer to the first character that matches ¢, or NULL if
none does.

Example
Tomap keystr[] charactersinto subst[] characters:

if (t = strchr(keystr, *s))
*s = subst[t - keystr];

See Also
memchr, strespn, strpbrk, strrchr, strspn

Notes
strchr is packaged in the integer library.

136 Using The Compiler © 2003 COSMIC Software

C Library - stremp

strcmp

Description
Compare two strings for lexical order

Syntax

#include <string.h>
int strcmp(char *sl1l, char *s2)

Function
strcmp compares two text strings, character by character, for lexica

order in the character collating sequence. The first string starts at sl, the
second at s2. The strings must match, including their terminating NUL
characters, in order for them to be equal.

Return Value
strcmp returns an integer greater than, equal to, or less than zero,

according to whether sl is lexicographically greater than, equal to, or
less than s2.

Example
To look for the string “include”:

if (strcmp(buf, “include™) == 0)
doinclude(Q);

See Also

memcmp, strncmp

Notes
strcmp is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 137

C Library - strcpy
strcpy

Description
Copy one string to another

Syntax

#include <string.h>
char *strcpy(char *sl1l, char *s2)

Function
strcpy copies the NUL terminated string at s2 to the buffer pointed at
by s1. Theterminating NUL is also copied.

Return Value
strcpy returns sl.

Example
To make acopy of the string S2 in dest:

strcpy(dest, s2);

See Also
memcpy, strncpy

Notes
There is no way to specify the size of the destination area, to prevent
storage overwrites.

strepy is packaged in the integer library, and may be implemented as a
builtin function.

138 Using The Compiler © 2003 COSMIC Software

C Library - strcspn

strcspn

Description
Find the end of a span of charactersin a set

Syntax

#include <string.h>
unsigned iInt strcspn(char *sl1, char *s2)

Function
strcspn scans the string starting at sl for the first occurrence of a char-

acter in the string starting at s2. It computes a subscript i such that:
. sl[i] isacharacter in the string starting at sl

. s1[i] compares equal to some character in the string starting at s2,
which may be its terminating null character.

Return Value
strespn returns the lowest possible value of i. s1[i] designates the termi-

nating null character if none of the charactersin sl arein s2.

Example
To find the start of a decimal constant in atext string:

if (Istr[i = strcspn(str, “0123456789+-")])
printf(““can®"t find number\n”);

See Also
memchr, strchr, strpbrk, strrchr, strspn

Notes
strespn is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 139

C Library - strlen

strien

Description
Find length of a string

Syntax

#include <string.h>
unsigned int strlen(char *s)

Function
strlen scansthe text string starting at s to determine the number of char-
acters before the terminating NUL.

Return Value
The value returned is the number of characters in the string before the
NUL.

Notes
strlen is packaged in the integer library.

140 Using The Compiler © 2003 COSMIC Software

C Library - strncat

strncat

Description
Concatenate strings of length n

Syntax

#include <string.h>
char *strncat(char *sl1, char *s2, unsigned char n)

Function
strncat appends a copy of the NUL terminated string at s2 to the end of

the NUL terminated string at s1. The first character of s2 overlaps the
NUL at the end of s1. n specifies the maximum number of charactersto
be copied, unless the terminating NUL in s2 is encountered first. A ter-
minating NUL is always appended to s1.

Return Value
strncat returns sl.

Example
To concatenate the strings “day” and “light”:

strepy(s, “day”);
strncat(s + 3, “light”, 5);

See Also
strcat

Notes
strncat is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 141

C Library - strncmp

strncmp

Description
Compare two n length strings for lexical order

Syntax

#include <string.h>
int strncmp(char *sl1, char *s2, unsigned char n)

Function
strncmp compares two text strings, character by character, for lexical
order in the character collating sequence. The first string starts at s1, the
second at s2. n specifies the maximum number of charactersto be com-
pared, unless the terminating NUL in sl or s2 is encountered first. The
strings must match, including their terminating NUL character, in order
for them to be equal.

Return Value
strncmp returns an integer greater than, equal to, or less than zero,
according to whether sl is lexicographically greater than, equal to, or
less than 2.

Example
To check for a particular error message:

if (strncmp(errmsg,

“can"t write output file”, 23) == 0)
cleanup(errmsg);

See Also
memcmp, strcmp

Notes
strncmp is packaged in the integer library.

142 Using The Compiler © 2003 COSMIC Software

C Library - strncpy

strncpy

Description
Copy n length string

Syntax

#include <string.h>
char *strncpy(char *sl1, char *s2, unsigned char n)

Function
strncpy copies the first n characters starting at location s2 into the

buffer beginning at s1. n specifies the maximum number of characters
to be copied, unless the terminating NUL in s2 is encountered first. In
that case, additional NUL padding is appended to s2 to copy atotal of n
characters.

Return Value
strncpy returns sl.

Example
To make a copy of the string s2 in dest:

strncpy(dest, s2, n);

See Also
memcpy, strcpy

Notes
If the string S2 points at is longer than n characters, the result may not
be NUL-terminated.

strncpy is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 143

C Library - strpbrk
strpbrk

Description
Find occurrence in string of character in set

Syntax

#include <string.h>
char *strpbrk(char *sl1l, char *s2)

Function
strpbrk scans the NUL terminated string starting at sl for the first
occurrence of acharacter inthe NUL terminated set s2.

Return Value
strpbrk returns a pointer to the first character in sl that is also contained
inthe set s2, or aNULL if none does.

Example
To replace unprintable characters (as for a 64 character terminal):

while (string = strpbrk(string, “<{|}-"))
*string = "@";

See Also
memchr, strchr, strespn, strrchr, strspn

Notes
strpbrk is packaged in the integer library.

144 Using The Compiler © 2003 COSMIC Software

C Library - strrchr

strrchr

Description
Scan string for last occurrence of character

Syntax

#include <string.h>
char *strrchr(char *s, char c)

Function
strrchr looks for the last occurrence of a specific character cin a NUL

terminated string starting at s.

Return Value
strrchr returns a pointer to the last character that matches c, or NULL if

none does.

Example
To find afilename within a directory pathname:

if (s = strrchr(*/usr/lib/libc.user”, */%)
++S;

See Also
memchr, strchr, strpbrk, strespn, strspn

Notes
strrchr is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 145

C Library - strspn
strspn

Description
Find the end of a span of characters not in set
Syntax
#include <string.h>
unsigned int strspn(char *sl1, char *s2)
Function

strspn scansthe string starting at sl for the first occurrence of acharac-
ter not in the string starting at s2. It computes a subscript i such that

. s1[i] is acharacter in the string starting at s1

. s1[i] compares equal to no character in the string starting at s2,
except possibly its terminating null character.

Return Value
strspn returns the lowest possible value of i. s1[i] designates the termi-
nating null character if al of the charactersin sl arein s2.

Example
To check a string for characters other than decimal digits:

it (str[strspn(str, “0123456789")])
printf(“invalid number\n”);

See Also
memchr, strcspn, strchr, strpbrk, strrchr

Notes
strspn is packaged in the integer library.

146 Using The Compiler © 2003 COSMIC Software

C Library - strstr

Strstr

Description
Scan string for first occurrence of string

Syntax

#include <string.h>
char *strstr(char *sl1l, char *s2)

Function
strstr looks for the first occurrence of a specific string s2 not including

itsterminating NUL, in aNUL terminated target string s1.

Return Value
strstr returns a pointer to the first character that matches c, or NULL if

none does.

Example
To look for akeyword in astring:

if (t = strstr(buf, “LIST?))
do_list(t);

See Also
memchr, strcspn, strpbrk, strrchr, strspn

Notes
strstr is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 147

C Library - strtod
strtod

Description
Convert buffer to double

Syntax

#include <stdlib.h>
double strtod(char *nptr, char **endptr)

Function
strtod converts the string at nptr into a double. The string is taken as
the text representation of a decimal number, with an optional fraction
and exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops on the first unrecognizable character.
Acceptable inputs match the pattern:

[+[-]d*[.d*][e[+]-]dd*]

where d isany decimal digit and eisthe character ‘€ or ‘E’. If endptr is
not a null pointer, *endptr is set to the address of the first unconverted
character remaining in the string nptr. No checks are made against over-
flow, underflow, or invalid character strings.

Return Value
strtod returns the converted double value. If the string has no recogniz-
able characters, it returns zero.

Example
To read a string from STDIN and convert it to adouble at d:

gets(buf);
d = strtod(buf, NULL);

See Also
atoi, atol, strtol, strtoul

Notes
strtod is packaged in the floating point library.

148 Using The Compiler © 2003 COSMIC Software

C Library - strtol

strtol

Description
Convert buffer to long

Syntax

#include <stdlib.h>
long strtol(char *nptr, char **endptr, char base)

Function
strtol converts the string at nptr into along integer. Leading whitespace

is skipped and an optional sign is permitted; conversion stops on the
first unrecognizable character. If baseis not zero, charactersa-z or A-Z
represents digitsin range 10-36. If base is zero, aleading “0x”” or “0X”
in the string indicates hexadecimal, aleading ““0” indicates octal, other-
wise the string is take as a decimal representation. If base is 16 and a
leading “Ox™ or “OX™ is present, it is skipped before to convert. If
endptr is not a null pointer, *endptr is set to the address of the first
unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtol returns the converted long integer. If the string has no recogniza-

ble characters, zero is returned.

Example
To read a string from STDIN and convert it to along I:

gets(buf);
1 = strtol(buf, NULL, 0);

See Also
atof, atoi, strtoul, strtod

Notes
strtol is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 149

C Library - strtoul
strtoul

Description
Convert buffer to unsigned long

Syntax

#include <stdlib.h>
unsigned long strtoul(char *nptr, char **endptr,
char base)

Function
strtoul converts the string at nptr into a long integer. Leading

whitespace is skipped and an optiona sign is permitted; conversion
stops on the first unrecognizable character. If base is not zero, charac-
tersa-z or A-Z represents digitsin range 10-36. If base is zero, a lead-
ing “Ox” or “0OX” in the string indicates hexadecimal, a leading “0”
indicates octal, otherwise the string is take as a decimal representation.
If baseis 16 and a leading “0x” or “0X” is present, it is skipped before
to convert. If endptr isnot anull pointer, *endptr is set to the address of
the first unconverted character in the string nptr.

No checks are made against overflow or invalid character strings.

Return Value
strtoul returns the converted long integer. If the string has no recogniza-

ble characters, zero is returned.

Example
To read a string from STDIN and convert it toalong |:

gets(buf);
1 = strtoul (buf, NULL, 0);

See Also
atof, atoi, strtol, strtod

Notes
strtoul is amacro redefined to strtol.

150 Using The Compiler © 2003 COSMIC Software

C Library - tan

tan

Description
Tangent

Syntax

#include <math.h>
double tan(double x)

Function
tan computes the tangent of X, expressed in radians, to full double pre-
cision.

Return Value
tan returns the nearest internal representation to tan(x), in the range
[-pi/2, pi/2], expressed as a double floating value. If the number in x is
too large to be represented, tan returns zero. An argument with alarge
size may return ameaninglessvalue, i.e. when x/(2 * pi) has no fraction
bits.

Example
To compute the tangent of theta:

y = tan(theta);

See Also

cos, sin

Notes
tan is packaged in the floating point library.

© 2003 COMIC Software Using The Compiler 151

C Library - tanh

tanh

Description
Hyperbolic tangent

Syntax

#include <math.h>
double tanh(double x)

Function
tanh computes the value of the hyperbolic tangent of x to double preci-
sion.

Return Value
tanh returns the nearest internal representation to tanh(x), expressed as
a double floating value. If the result is too large to be properly repre-
sented, tanh returns zero.

Example
To compute the hyperbolic tangent of x:

y = tanh(X);

See Also
cosh, exp, sinh

Notes
tanh is packaged in the floating point library.

152 Using The Compiler © 2003 COSMIC Software

C Library - tolower

tolower

Description
Convert character to lowercase if necessary

Syntax

#include <ctype.h>
int tolower(char c)

Function
tolower converts an uppercase letter to its lowercase equivaent, leav-

ing al other characters unmodified.

Return Value
tolower returns the corresponding lowercase letter, or the unchanged

character.

Example
To accumulate a hexadecimal digit:

for (sum = 0; isxdigit(*s); ++s)
if (isdigit(*s)
sum = sum * 16 + *s - "0";
else
sum = sum * 16 + tolower(*s) + (10 - "a");

See Also
toupper

Notes
tolower is packaged in the integer library.

© 2003 COMIC Software Using The Compiler 153

C Library - toupper

toupper

Description
Convert character to uppercase if necessary

Syntax

#include <ctype.h>
int toupper(char c)

Function
toupper converts alowercase |etter to its uppercase equivaent, leaving
al other characters unmodified.

Return Value
toupper returns the corresponding uppercase letter, or the unchanged
character.

Example
To convert a character string to uppercase letters:

for (i = 0; 1 < size; ++i)
buf[i] = toupper(buf[i]);

See Also

tolower

Notes
toupper is packaged in the integer library.

154 Using The Compiler © 2003 COSMIC Software

CHAPTER

5

Using The Assembler

The ca6805 cross assembler translates your assembly language source
files into relocatable object files. The C cross compiler calls ca6805 to
assemble your code automatically, unless specified otherwise. ca6805
generates also listings if requested. This chapter includes the following
sections:

* Invoking ca6805

* Object File

e Listings

» Assembly Language Syntax
» Branch Optimization

e Old Syntax

e C StyleDirectives

e Assembler Directives

© 2003 COSMIC Software Using The Assembler 155

Invoking ca6805

Invoking ca6805

cab805 accepts the following command line options, each of which is
described in detail below:

ca6805 [options] <files>
-a absolute assembler
-b do not optimizes branches
-C output cross reference
-d*> define symbol=value
+e* error file name
-ff use formfeed in listing
-ft force title in listing
-f# Till byte value
-h* include header
-1*> include path
-1 output listing
+1* listing file name
-m accept old syntax
-mi accept label syntax
-0* output file name
-pe all equates public
-p all symbols public
-pl keep local symbol
-u undefined in listing
-V be verbose
-X include line debug info
-Xp no path in debug info
-xx include full debug info

-a map all sectionsto absolute, including the predefined ones.

-b do not optimize branch instructions. By default, the assem-
bler replaces long branches by short branches wherever a
shorter instruction can be used, and short branches by long
branches wherever the displacement istoo large. This opti-
mization aso applies to jump and jump to subroutines
instructions.

-C produce cross-reference information. The cross-reference
information will be added at the end of the listing file; this
option enforces the -| option.

156 Using The Assembler © 2003 COSMIC Software

Invoking ca6805

-d*> where * has the form name=value, defines name to have
the value specified by value. This option is equivalent to
using an equ directive in each of the source files.

+e* log errors from assembler in the text file * instead of dis-
playing the messages on the terminal screen.

-ff use formfeed character to skip pages in listing instead of
using blank lines.

-ft output atitle in listing (date, file name, page). By defaullt,
no titleis output.

-f# define the value of the filling byte used to fill any gap cre-
ated by the assembler directives. Default isO.

-h* include the file specified by * before starting assembly. It
is equivalent to an include directive in each sourcefile.

-i*> define a path to be used by the include directive. Up to 20
paths can be defined. A path is adirectory name and isnot
ended by any directory separator character.

| create a listing file. The name of the listing file is derived
from the input file name by replacing the suffix by the *.Is
extension, unless the +I option has been specified.

+|* create a listing file in the text file *. If both -| and +| are
specified, the listing file name is given by the +| option.

-m accept the old Motorola syntax.
-mi accept label that is not ended witha‘:’ character.
-0* write object code to the file *. If no file name is specified,

the output file name is derived from the input file name, by
replacing the rightmost extension in the input file name
with the character ‘0. For example, if the input file name
isprog.s, the default output file nameis prog.o.

© 2003 COMIC Software Using The Assembler 157

Object File

-p mark all defined symbols as public. This option has the
same effect than adding a xdef directive for each label.

-pe mark all symbols defined by an equ directive as public.
This option has the same effect than adding a xdef direc-
tive for each of those symbols.

-pl put locals in the symbol table. They are not published as
externals and will be only displayed in the linker map file.

-U produce an error message in the listing file for all
occurence of an undefined symbol. This option enforces
the -| option.

-V display the name of each file which is processed.

-X add line debug information to the object file.

-Xp do not prefix filenames in the debug information with any

absolute path name. Debuggers will have to be informed
about the actual fileslocation.

-XX add debug information in the object file for any label
defining code or data. This option disables the -p option as
only public or used labels are selected.

Each source file specified by <files> will be assembled separately, and
will produce separate object and listing files. For each source file, if no
errors are detected, ca6805 generates an object file. If requested by the
-l or -c options, ca6805 generates a listing file even if errors are
detected. Such lines are followed by an error message in the listing.

Object File

The object file produced by the assembler is a relocatable object in a
format suitable for the linker clnk. This will normally consist of
machine code, initialized data and relocation information. The object
file also contains information about the sections used, a symbol table,
and a debug symbol table.

158 Using The Assembler © 2003 COSMIC Software

Listings

Listings

The listing stream contains the source code used as input to the assem-
bler, together with the hexadecimal representation of the corresponding
object code and the address for which it was generated. The contents of
the listing stream depends on the occurrence of the list, nolist, clist,
dlist and mlist directives in the source. The format of the output is as
follows:

<address> <generated_code> <source line>

where <address> is the hexadecima relocatable address where the
<source_line> has been assembled, <generated _code> is the hexadec-
imal representation of the object code generated by the assembler and
<source line> is the origina source line input to the assembler. If
expansion of data, macros and included files is not enabled, the
<generated_code> print will not contain a complete listing of all gen-
erated code.

Addresses in the listing output are the offsets from the start of the cur-
rent section. After the linker has been executed, the listing files may be
updated to contain absolute information by the clabs utility. Addresses
and code will be updated to reflect the actual values as built by the
linker.

Severa directives are available to modify the listing display, such as
title for the page header, plen for the page length, page for starting a
new page, tabs for the tabulation characters expansion. By default, the
listing file is not paginated. Pagination is enabled by using at least one
title directive in the source file, or by specifying the -ft option on the
command line. Otherwise, the plen and page directives are simply
ignored. Some other directives such as clist, mlist or dlist control the
amount of information produced in the listing.

A cross-reference table will be appended to the listing if the -c option
has been specified. This table gives for each symbol its value, its
attributes, the line number of the line where it has been defined, and the
list of line numbers where it is referenced.

© 2003 COMIC Software Using The Assembler 159

Assembly Language Syntax

Assembly Language Syntax

The assembler ca6805 conforms to the Motorola syntax as described in
the document Assembly Language Input Sandard. The assembly lan-
guage consists of lines of text in the form:

[label:] [command [operands]] [; comment]
or
; comment

where ‘:" indicates the end of alabel and *;’ defines the start of a com-
ment. The end of aline terminates a comment. The command field may
be aninstruction, adirective or amacro call.

Instruction mnemonics and assembler directives may be written in
upper or lower case. The C compiler generates lowercase assembly lan-

guage.

A source file must end with the end directive. All the following lines
will be ignored by the assembler. If an end directive is found in an
included file, it stops only the process for the included file.

Instructions
ca6805 recognizes the following instructions:

adc bhi brset decx mul sbc

add bhs bset eor neg sec

and bih bsr inc nega sei

asl bil clc inca negx sta

asla bit cli incx nop stop
aslx blo clr jmp ora stx

asr bls clra jsr rol sub

asra bmc clrx Ida rola swi

asrx bmi cmp 1dx rolx tax

bcc bms com Isl ror tst

bclr bne coma Isla rora tsta
bcs bpl comx [Islx rorx tstx
beq bra cpx Isr rsp txa

bhcc brclr dec Isra rti wait
bhcs brn deca Isrx rts

160 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

The operand field of an instruction uses an addressing mode to
describe the instruction argument. The following example demonstrates

the accepted syntax:
tax ; implicit
Ida #1 ; immediate
and var ; direct or extended
add , X ; indexed
or 0,x ; indexed
bne loop ; relative
bset 1,var ; bit number

brset 2,var,loop ; bit test and branch

The assembler chooses the smallest addressing mode where several
solutions are possible. Direct addressing mode is selected when using a
label defined in the .bsct section.

For an exact description of the above instructions, refer to the
Motorola's M68HCO5 Reference Manual.

Labels

A source line may begin with alabel. Some directives require alabel on
the same line, otherwise this field is optional. A label must begin with
an alphabetic character, the underscore character * _* or the period char-
acter ‘.. It is continued by alphabetic (A-Z or az) or numeric (0-9)
characters, underscores, dollar signs ($) or periods. Labels are case sen-
sitive. The processor register names ‘a’ and ‘X’ are reserved and cannot
be used as labels.

datal:dc.b $56
c_reg:ds.b 1

When a label is used within a macro, it may be expanded more than
once and in that case, the assembler will fail with a multiply defined
symbol error. In order to avoid that problem, the special sequence ‘\@’
may be used as a label prefix. This sequence will be replaced by a
unique sequence for each macro expansion. This prefix is only allowed
inside a macro definition.

wait: macro

\@loop:brsetl,PORTA,\@loop
endm

© 2003 COMIC Software Using The Assembler 161

Assembly Language Syntax

Temporary Labels
The assembler allows temporary labels to be defined when there is no
need to give them an explicit name. Such alabel is composed by a dec-
imal number immediately followed by a‘$ character. Such a label is
valid until the next standard label or the local directive. Then the same
temporary label may be redefined without getting a multiply defined

error message.
1%: deca

bne 1%
2%: decb

bne 2%

Temporary labels do not appear in the symbol table or the cross refer-
encelist.

For example, to define 3 different local blocks and create and use 3 dif-
ferent local labels named 10$:

functionl:

10$: [Ida var
beq 10%
sta var2
local

10$: OIda var2
beq 10%
sta var
rts

function2:

10$: [Ida var2
sub var
bne 10%
rts

Constants

The assembler accepts numeric constants and string constants.
Numeric constants are expressed in different bases dependingona pre-
fix character asfollows:

162 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

10 decimal (no prefix)
%1010 binary
@12 octal
$A hexadecimal

The assembler also accepts numerics constants in different bases
depending on a suffix character as follow:

Suffix Base

D, d or none decimal (no prefix)
Borb binary
Qorq octal

OAH or OAh hexadecimal

The suffix letter can be entered uppercase or lowercase. Hexadecimal
numbers still need to start with a digit.

Sring constants are a series of printable characters between single or
double quote characters:

“This is a string”’
“This is also a string”

Depending on the context, a string constant will be seen either as a
series of bytes, for adatainitiaization, or as a numeric; in which case,
the string constant should be reduced to only one character.

hexa: dc.b “0123456789ABCDEF”
start:cmp #’A” ; ASCII value of ’A”

Expressions
An expression consists of a number of labels and constants connected
together by operators. Expressions are evaluated to 32-bit precision.
Note that operators have the same precedence than in the C language.

© 2003 COMIC Software Using The Assembler 163

Assembly Language Syntax

A special label written ‘*’ is used to represent the current location
address. Note that when **’ is used as the operand of an instruction, it
has the value of the program counter before code generation for that
instruction. The set of accepted operatorsis:

+ addition

- subtraction (negation)
* multiplication

/ division

% remainder (modulus)
& bitwise and

| bitwise or

n bitwise exclusive or
~ bitwise complement
<< left shift

>> right shift

== equality

1= difference

< less than

<= less than or equal

> greater than

>= greater than or equal

&& logical and
11 logical or
! logical complement

These operators may be applied to constants without restrictions, but
are restricted when applied to relocatable labels. For those labels, the
addition and substraction operators only are accepted and only in the
following cases:

label + constant
label - constant
labell - label2

NOTE

The difference of two relocatable labelsis valid only if both symbols are
not external symbols, and are defined in the same section.

An expression may also be constructed with a special operator. These
expressions cannot be used with the previous operators and have to be
specified alone.

164 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

high(expression) upper byte
low(expression) lower byte
page(expression) page byte

These specia operators evaluate an expression and extract the appro-
priate information from the result. The expression may be relocatable,
and may use the set of operatorsif allowed.

high - extract the upper byte of the 16-bit expression
low - extract the lower byte of the 16-bit expression

page - extract the page value of the expression. It is computed by the
linker according to the -bs option used. Thisis used to get the address
extension when bank switching is used.

Macro Instructions
A macro instruction isalist of assembler commands collected under a
unique name. This name becomes a new command for the following of
the program. A macro begins with a macro directive and ends with a
endm directive. All the lines between these two directives are recorded
and associated with the macro name specified with the macro directive.

signex:macro ; sign extension
clrx ; prepare MSB
tsta ; test sign
bpl \@pos ; if not positive
comx ; invert MSB
\@pos:endm ; end of macro

This macro is named signex and contains the code needed to perform a
sign extension of a into x. Whenever needed, this macro can be
expanded just by using its name in place of a standard instruction:

Ida char+1l; load LSB

signex ; expand macro

stx char ; store result

The resulting code will be the same as if the following code had been
written:

© 2003 COMIC Software Using The Assembler 165

Assembly Language Syntax

Ida char+1; load LSB

clrx ; prepare MSB
tsta ; test sign
bpl pos ; 1f not positive
comx ; invert MSB

pos: stx char ; store result

A macro may have up to 35 parameters. A parameter is written \1,
\2,...\9)\A ... \Z inside the macro body and refers explicitly to the first,
second,... ninth argument and \A to \Z to denote the tenth to 35th oper-
and on the invocation line, which are placed after the macro name, and
separated by commas. Each argument replaces each occurrence of its
corresponding parameter. An argument may be expressed as a string
constant if it contains a comma character.

A macro can also handle named arguments instead of numbered argu-
ment. In such a case, the macro directive is followed by alist of argu-
ment named, each prefixed by a\ character, and separated by commas.
Inside the macro body, arguments will be specified using the same syn-
tax or a sequence starting by a \ character followed by the argument
named placed between parenthesis. This alternate syntax is useful to
catenate the argument with a text string immediately starting with
aphanumeric characters.

The special parameter \# is replaced by a numeric value corresponding
to the number of arguments actually found on the invocation line.

In order to operate directly in memory, the previous macro may have
been written using the numbered syntax:

signex:macro

; sign extension

clrx ; prepare MSB

lda \1 ; load LSB

bpl \@pos ; if not positive

comx ; invert MSB
\@pos:stx \1 ; store MSB

endm ; end of macro
And called:

signex char ;

166 Using The Assembler

sign extend char

© 2003 COSMIC Software

Assembly Language Syntax

This macro may also be written using the named syntax:

signex:macro\value; sign extension
clrx ; prepare MSB
Ida \value; load LSB
bpl \@pos ; if not positive

comx ; invert MSB
\@pos:stx \(value); store MSB
endm ; end of macro

The form of amacro call is:

name>[.<ext>] [<arguments>]

The special parameter \0 corresponds to an extension <ext> which may
follow the macro name, separated by the period character ‘.’. An exten-
sion isasingle letter which may represent the size of the operands and
the result. For example:

table:macro
dc.\01,2,3,4
endm

When invoking the macro:
table.b

will generate atable of byte:
dc.b 1,2,3,4

When invoking the macro:
table.w

will generate atable of word:

dc.w 1,2,3,4

The specia parameter * is replaced by a sequence containing the list of
all the passed arguments separated by commas. This syntax is useful to
pass all the macro arguments to another macro or arepeat! directive.

© 2003 COMIC Software Using The Assembler 167

Assembly Language Syntax

The directive mexit may be used at any time to stop the macro expan-
sion. It isgenerally used in conjunction with a conditional directive.

A macro call may be used within another macro definition, all macros
must then be defined before their first call. A macro definition cannot
contain another macro definition.

If alisting is produced, the macro expansion lines are printed if enabled
by the mlist directive. If enabled, the invocation line is not printed, and
al the expanded lines are printed with all the parameters replaced by
their corresponding arguments. Otherwise, the invocation line only is
printed.

Conditional Directives

A conditional directive allows parts of the program to be assembled or
not depending on a specific condition expressed in an if directive. The
condition is an expression following the if command. The expression
cannot be relocatable, and shall evaluate to a numeric result. If the con-
dition is false (expression evaluated to zero), the lines following the if
directive are skipped until an endif or else directive. Otherwise, the
lines are normally assembled. If an else directive is encountered, the
condition status is reversed, and the conditional process continues until
the next endif directive.

if debug == 1
ldx #message
jsr print
endif

If the symbol debug is equal to 1, the next two lines are assembled.
Otherwise they are skipped.

if offset 1= 1 ; if offset too large

addptroffset ; call a macro

else ; otherwise

incx ; increment X register
endif

If the symbol offset is not one, the macro addptr is expanded with off-
set as argument, otherwise the aix instruction is directly assembled.

168 Using The Assembler © 2003 COSMIC Software

Assembly Language Syntax

Conditional directives may be nested. An else directive refers to the
closest previous if directive, and an endif directive refers to the closest
previous if or else directive.

If alisting is produced, the skipped lines are printed only if enabled by
the clist directive. Otherwise, only the assembled lines are printed.

Sections
The assembler allows code and data to be splitted in sections. A section
is a set of code or data referenced by a section name, and providing a
contiguous block of relocatable information. A section is defined with a
section directive, which creates a new section and redirects the follow-
ing code and data thereto. The directive switch can be used to redirect
the following code and data to another section.

data: section ; defines data section
text: section ; defines text section
start:

1dx #value; fills text section

jmp print

switchdata ; use now data section
value:

dc.b 1,2,3 ; Fills data section

The assembler allows up to 255 different sections. A section name is
limited to 15 characters. If a section name istoo long, it issimply trun-
cated without any error message.

The assembler predefines the following sections, meaning that a section
directive is not needed before to use them:

Section | Description
text executable code
.data initialized data
.bss uninitialized data
.bsct initialized data in zero page
.ubsct non initialized data in zero page

© 2003 COMIC Software Using The Assembler 169

Assembly Language Syntax

The sections .bsct and .ubsct are used for locating datain the zero page
of the processor. The zero page is defined as the memory addresses
between 0x00 and OxFF inclusive, i.e. the memory directly addressable
by a single byte. Several processors include special instructions and/or
addressing modes that take advantage of this specia address range. The
Cosmic assembler will automatically use the most efficient addressing
mode if the data objects are allocated in the .bsct, .ubsct or a section
with the same attributes. If zero page data objects are defined in another
file then the directive xref.b must be used to externally reference the
data object. This directive specifies that the address for these data
object is only one byte and therefore the assembler may use 8 hit
addressing modes.

xref var

xref.b zvar
switch .bsct

zvar2: ds.b 1
switch _bss

var2: ds.b 1
switch .text
Ida var
Ida zvar
Ida var2
Ida var2
end

Bit Handling
The assembler allows symbols specifying bit addresses instead of byte

addresses. A bit address is obtained from a byte address and a bit
number by or’ing the bit number with the byte address 3-bit shifted to
the left. Such symbol can be defined either by an equate definition or as
member of abit section. Such a section can be defined by using the sec-
tion directive with the bit attribute. In a bit section, any directive creat-
ing or reserving bytes can be used, but will create or reserve bits. Bit
symbols can be directly used by the bit instructions with a shortened
syntax, as a bit symbol is defining both a byte and a bit in this byte. Bit
symbols can be declared as external by using the xbit directive. Exter-
nal definitions for bit symbols located in the zero page will used the
xbit.b directive.

Xbit.bbl ; external bit declaration

170 Using The Assembler © 2003 COSMIC Software

Branch Optimization

PA3: equ PORTA:3; bit 3 of byte PORTA
-bit: sectionzpage,bit; create a bit section named “.bit”
b0: ds.b 1 ; allocates one bit
switch.text
brclr PA3,skip; use directly bit symbol
bset b0 ; with bit instructions
skip:
bclr bl

Bit sections are located at link time either at specified bit addresses or
attached to any zero page section. The linker is computing the proper
addresses when hooking bit sections to byte sections, or byte sectionsto
bit sections.

Includes

The include directive specifies a file to be included and assembled in
place of the include directive. The file name is written between double
quotes, and may be any character string describing a file on the host
system. If the file cannot be found using the given name, it is searched
from all the include paths defined by the -i options on the command
line, and from the paths defined by the environment symbol CXLIB, if
such a symbol has been defined before the assembler invocation. This
symbol may contain several paths separated by the usual path separator
of the host operating system (*;’ for MSDOS and ‘:’ for UNIX).

The -h option can specify afileto be “included”. The file specified will
be included as if the program had an include directive at its very top.
The specified file will be included before any source file specified on
the command line.

Branch Optimization

Branch instructions are by default automatically optimized to produce
the shortest code possible. This behaviour may be disabled by the -b
option. This optimization operates on conditional branches, on jumps
and jumps to subroutine.

A conditional branch offset is limited to the range [-128,127]. If such
aninstruction cannot be encoded properly, the assembler will replace it
by a sequence containing an inverted branch to the next location fol-
lowed immediately by ajump to the original target address. The assem-

© 2003 COMIC Software Using The Assembler 171

Old Syntax

bler keep track of the last replacement for each label, so if along branch
has already been expanded for the same label at alocation close enough
from the current instruction, the target address of the short branch will
be changed only to branch on the aready existing jump instruction to
the specified label.

beq farlabel becomes bne *+5
jmp farlabel

Note that a bra instruction will be replaced by asingle jmp instruction if
it cannot be encoded as arelative branch.

A jmp or jsr instruction will be replaced by a bra or bsr instruction if
the destination addressis in the same section than the current one, and if
the displacement isin the range allowed by arelative branch.

Old Syntax

The -m option allows the assembler to accept old constructs which are
now obsolete. The following features are added to the standard behav-
iour:

e acomment line may begin witha‘*’ character;

« alabe starting in the first column does not need to be ended with
a‘:’ character;

* no eror message is issued if an operand of the dc.b directive is
too large;

» the section directive handles numbered sections;

The comment separator at the end of an instructionisstill the*;’ charac-
ter because the ‘*’ character isinterpreted as the multiply operator.

172 Using The Assembler © 2003 COSMIC Software

C Syle Directives

C Style Directives

The assembler also supports C style directives matching the preproces-
sor directives of a C compiler. The following directives list shows the
equivalence with the standard directives:

C Style Assembler Style
#include “file” include “file”
#define label expression label: equ expression

#define label

label: equ 1

#if expression

if expression

#ifdef label ifdef label
#ifndef label ifndef label
#else else
#endif endif

#error “message”

fail “message”

equal to a numerical value.

NOTE

The #define directive does not implement all the text replacement fea-
tures provided by a C compiler. It can be used only to define a symbol

Assembler Directives

This section consists of quick reference descriptions for each of the

ca6805 assembler directives.

© 2003 COSMIC Software

Using The Assembler 173

C Library - align

align
Description
Align the next instruction on a given boundary

Syntax

‘ align <expression>, [<fill_value>]

Function

The align directive forces the next instruction to start on a specific
boundary. The align directive is followed by a constant expression
which must be positive. The next instruction will start at the next
address which is a multiple of the specified value. If bytes are added in
the section, they are set to the value of the filling byte defined by the -f
option. If <fill_value> is specified, it will be used locally as the filling
byte, instead of the one specified by the -f option.

Example
align 3 ; next address is multiple of 3
ds.b 1

See Also
even

174 Using The Assembler © 2003 COSMIC Software

C Library - base

base

Description
Define the default base for numerical constants

Syntax

| base <expression>

Function
The base directive sets the default base for numerical constants begin-
ning with a digit. The base directive is followed by a constant expres-
sion which value must be one of 2, 8, 10 or 16. The decimal baseis used
by default. When another base is selected, it isno more possible to enter
decimal constants.

Example
base 8 ; select octal base

Ida #377 ; load $FF

© 2003 COMIC Software Using The Assembler 175

C Library - bsct
bsct

Description
Switch to the predefined .bsct section.

Syntax
‘ bsct

Function
The bsct directive switches input to a section named .bsct, al'so known
as the zero page section. The assembler will automatically select the
direct addressing mode when referencing an object defined in the .bsct
section.

Example
bsct
c_reg:
ds.b 1

Notes
The .bsct section is limited to 256 bytes, but the assembler does not

check the .bsct section size. Thiswill be done by the linker.

See Also
section, switch

176 Using The Assembler © 2003 COSMIC Software

C Library - clist

clist
Description

Turn listing of conditionally excluded code on or off.

Syntax
| clist [on]off]

Function
The clist directive controls the output in the listing file of conditionally
excluded code. It is effective if and only if listings are requested; it is
ignored otherwise.

The parts of the program to be listed are the program lineswhich are not
assembl ed as a consequence of if, else and endif directives.

See Also
if, else, endif

© 2003 COMIC Software Using The Assembler 177

C Library - dc
dc

Description
Allocate constant(s)

Syntax

‘ dc[-size] <expression>[,<expression>...]

Function
The dc directive alocates and initializes storage for constants. If
<expression> isastring constant, one byteis allocated for each charac-
ter of the string. Initialization can be specified for each item by giving a
series of values separated by commas or by using a repeat count.

The dc and dc.b directives will alocate one byte per <expression>.
The dc.w directive will allocate one word per <expression>.
The dc.l directive will alocate one long word per <expression>.

Example
digit:dc.b 10,"0123456789"
dc.w digit

Note

For compatibility with previous assemblers, the directive fcb is aias to
dc.b, and the directive fdb isdiasto dc.w.

178 Using The Assembler © 2003 COSMIC Software

C Library - dcb

dcb

Description
Allocate constant block

Syntax

| dcb.<size> <count>,<value>

Function
The dcb directive allocates a memory block and initializes storage for
constants. The size areais the number of the specified value <count> of
<size>. The memory area can beinitialized with the <value> specified.

The dcb and dcb.b directives will alocate one byte per <count>.
The dcb.w directive will allocate one word per <count>.

Thedcb.I directive will allocate one long word per <count>.

Example
digit:dcb.b 10,5 ; allocate 10 bytes,
; all initialized to 5

© 2003 COMIC Software Using The Assembler 179

C Library - dlist
dlist

Description
Turn listing of debug directives on or off.

Syntax
| dlist [on]off]

Function
The dlist directive controls the visibility of any debug directivesin the
listing. It is effective if and only if listings are requested; it is ignored
otherwise.

180 Using The Assembler © 2003 COSMIC Software

CLibrary - ds

ds

Description
Allocate variable(s)

Syntax

| ds[-size] <space>

Function
The ds directive allocates storage space for variables. <space> must be
an absolute expression. Bytes created are set to the value of the filling
byte defined by the -f option.

The dsand ds.b directives will allocate <space> bytes.
The ds.w directive will allocate <space> words.
Theds. directive will allocate < space> long words.

Example
ptlec:ds.b 2
ptecr:ds.b 2
chrbuf:ds.w 128

Note

For compatibility with previous assemblers, the directive rmb is alias
tods.b.

© 2003 COMIC Software Using The Assembler 181

CLibrary - else

else

Description
Conditional assembly

Syntax

if <expression>
instructions
else
instructions
endc

Function
The else directive follows an if directive to define an alternative condi-

tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endif directive. An else directive applies
to the closest previousif directive.

Example
if offset 1= 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
incx ; increment X register
endif

Note

The else and elsec directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endif, clist

182 Using The Assembler © 2003 COSMIC Software

C Library - elsec

elsec

Description
Conditional assembly

Syntax

if <expression>
instructions
elsec
instructions
endc

Function
The elsec directive follows an if directive to define an alternative condi-

tional sequence. It reverts the condition status for the following instruc-
tions up to the next matching endc directive. An elsec directive applies
to the closest previousif directive.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
incx ; increment X register
endc

Note

The elsec and else directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, endc, clist, else

© 2003 COMIC Software Using The Assembler 183

CLibrary - end

end

Description
Stop the assembly

Syntax

‘ end

Function
The end directive stops the assembly process. Any statements follow-
ing it areignored. If the end directiveis encountered in an included file,
it will stop the assembly process for the included file only.

184 Using The Assembler © 2003 COSMIC Software

C Library - endc

endc

Description
End conditional assembly

Syntax

if<cc> <expression>
instructions
endc

Function
The endc directive closes an if<cc> or elsec conditional directive. The

conditional status reverts to the one existing before entering the if<cc>
directives. The endc directive applies to the closest previous if<cc> or

elsec directive.

Example
ifge offset-127 ; if offset too large

addptroffset ; call a macro
elsec ; otherwise

incx ; increment X register
endc

Note
The endc and endif directives are equivalent and may used without dis-

tinction. They are provided for compatibility with previous assemblers.

See Also

if<cc>, elsec, clist, end

© 2003 COMIC Software Using The Assembler 185

C Library - endif

endif

Description
End conditional assembly

Syntax

if <expression>
instructions
endif

Function
The endif directive closes an if, or el'se conditional directive. The con-

ditional status revertsto the one existing before entering theif directive.
The endif directive appliesto the closest previous if or else directive.

Example
if offset 1= 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
incx ; increment X register
endif

Note

The endif and endc directives are equivalent and may used without dis-
tinction. They are provided for compatibility with previous assemblers.

See Also
if, else, clist

186 Using The Assembler © 2003 COSMIC Software

C Library - endm

endm

Description
End macro definition

Syntax

label: macro
<macro_body>
endm

Function
The endm directive is used to terminate macro definitions.

Example
; define a macro that places the length of

; a string in a byte prior to the string

Itext:macro
ds.b \@2 - \@1

\@1:
ds.b \1
\@2:
endm
See Also
mexit, macro

© 2003 COMIC Software Using The Assembler 187

C Library - endr

endr

Description
End repeat section

Syntax

repeat
<repeat_body>
endr

Function
The endr directiveis used to terminate repeat sections.

Example
; shift a value n times
asIn: macro
repeat \1
aslb
endr
endm

; use of above macro
asln 10;shift 10 times

See Also
repeat, repeatl

188 Using The Assembler © 2003 COSMIC Software

C Library - equ

Description

Give a permanent value to a symbol

Syntax

equ

| label: equ <expression>

Function

The equ directive is used to associate a permanent value to a symbol
(label). Symbols declared with the equ directive may not subsequently
have their value atered otherwise the set directive should be used.
<expression> must be either a constant expression, or a relocatable
expression involving a symbol declared in the same section as the cur-
rent one.

The equ directive can also be used to define a bit symbol by suffixing
the defining expression with an absolute bit number. The expression
and the bit number are separated by a colon character *:’. The expres-

sion can be absolute or rel ocatable.

Example

false:equ O ; initialize these values

true: equ 1
tablen:equ tabfin - tabsta;compute table length
$0; define strings for ascii characters

nul:
soh:
stx:
etx:
eot:
enq:

PORTB:
PB2:

See Also
lit, set

equ
equ
equ
equ
equ
equ

equ
equ

$1
$2
$3
$4
$5

$1
PORTB:2

© 2003 COSMIC Software

Using The Assembler 189

C Library - even

even

Description
Assemble next byte at the next even address relative to the start of a
section.

Syntax

‘ even [Fill_<value>]

Function
The even directive forces the next assembled byte to the next even
address. If abyteis added to the section, it is set to the value of the fill-
ing byte defined by the -f option. If <fill_value> is specified, it will be
used locally as the filling byte, instead of the one specified by the -f

option.
Example
vowtab:dc.b "aeiou”
even ; ensure aligned at even address

tentab:dc.w 1, 10, 100, 1000

190 Using The Assembler © 2003 COSMIC Software

C Library - fail

fail

Description
Generate error message.

Syntax

| fail "string”

Function
Thefail directive outputs “string” as an error message. No output fileis
produced as this directive creates an assembly error. fail is generaly
used with conditional directives.

Example
Max: equ 512
ifge value - Max
fail “Value too large”

© 2003 COMIC Software Using The Assembler 191

I!il C Library - if

Description
Conditional assembly

Syntax
iT <expression> or iT <expression>
instructions instructions
endif else
instructions
endif
Function

The if, else and endif directives allow conditional assembly. The if
directive is followed by a constant expression. If the result of the
expression is not zero, the following instructions are assembled up to
the next matching endif or else directive; otherwise, the following
instructions up to the next matching endif or else directive are skipped.

If the if statement ends with an else directive, the expression result is
inverted and the same process appliesto the following instructions up to
the next matching endif. So, if the if expression was not zero, the
instructions between else and endif are skipped; otherwise, the instruc-
tions between else and endif are assembled. An else directive appliesto
the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
if offset 1= 1 ; if offset too large
addptroffset ; call a macro
else ; otherwise
incx ; increment X register
endif

See Also

else, endif, clist

192 Using The Assembler © 2003 COSMIC Software

C Library - ifc

Ifc

Description
Conditional assembly
Syntax
ifc <stringl>,<string2> orifc <stringl>,<string2>
instructions instructions
endc elsec
instructions
endc
Function

The ifc, else and endc directives alow conditional assembly. The ifc
directive is followed by a constant expression. If <stringl> and
<string2> are equals, the following instructions are assembled up to the
next matching endc or elsec directive; otherwise, the following instruc-
tions up to the next matching endc or elsec directive are skipped.

If the ifc statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifc “hello”, \2 ; if “hello” equals argument
Idab #45 ; load 45
elsec ; otherwise...
Idab #0
endc
See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 193

C Library - ifdef
Ifdef

Description
Conditional assembly
Syntax
ifdef <label> or ifdef <label>
instructions instructions
endc elsec
instructions
endc
Function

The ifdef, elsec and endc directives allow conditional assembly. The
ifdef directiveisfollowed by alabel <label>. If <label> is defined, the
following instructions are assembled up to the next matching endc or
elsec directive; otherwise, the following instructions up to the next
matching endc or elsec directive are skipped. <label> must be first
defined. It cannot be aforward reference.

If the ifdef statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endif. So, if the ifdef expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifdef offsetl ; if offsetl is defined
addptroffsetl ; call a macro
elsec ; otherwise
addptroffset2 ; call a macro
endif

See Also

ifndef, elsec, endc, clist

194 Using The Assembler © 2003 COSMIC Software

C Library - ifeq

Ifeq

Description
Conditional assembly
Syntax
ifeq <expression> or ifeq <expression>
instructions instructions
endc elsec
instructions
endc
Function

The ifeq, elsec and endc directives allow conditional assembly. The
ifeq directive is followed by a constant expression. If the result of the
expression is equal to zero, the following instructions are assembled up
to the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifeq statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifeq expression is equal to zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
appliesto the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifeq offset ; if offset nul
tsta ; just test it
elsec ; otherwise
add #offset ; add to accu
endc

See Also

elsec, endc, clist

© 2003 COSMIC Software Using The Assembler 195

C Library - ifge
Ifge

Description
Conditional assembly

Syntax
ifge <expression> or ifge <expression>
instructions instructions
endc elsec

instructions
endc
Function

The ifge, elsec and endc directives alow conditional assembly. The
ifge directive is followed by a constant expression. If the result of the
expression is greater or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If the ifge statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if theifge expression isgreater or equal
to zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifge offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
incx ; increment X register
endc

See Also

elsec, endc, clist

196 Using The Assembler © 2003 COSMIC Software

C Library - ifgt

Ifgt

Description
Conditional assembly
Syntax
ifgt <expression> or ifgt <expression>
instructions instructions
endc elsec
instructions
endc
Function

Theifgt, elsec and endc directives allow conditional assembly. Theifgt
directive is followed by a constant expression. If the result of the
expression is greater than zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If theifgt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the ifgt expression was greater than
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifgt offset-127 ; if offset too large
addptroffset ; call a macro
elsec ; otherwise
incx ; increment X register
endc

See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 197

C Library - ifle

Ifle

Description
Conditional assembly
Syntax
ifle <expression> or ifle <expression>
instructions instructions
endc elsec
instructions
endc
Function

Theifle, elsec and endc directives alow conditional assembly. Theifle
directive is followed by a constant expression. If the result of the
expression is less or equal to zero, the following instructions are
assembled up to the next matching endc or elsec directive; otherwise,
the following instructions up to the next matching endc or elsec direc-
tive are skipped.

If theifle statement ends with an elsec directive, the expression result is
inverted and the same process appliesto the following instructions up to
the next matching endc. So, if the ifle expression was less or equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifle offset-127 ; if offset small enough
incx ; increment X register
elsec ; otherwise
addptroffset ; call a macro
endc

See Also

elsec, endc, clist

198 Using The Assembler © 2003 COSMIC Software

C Library - iflt

Iflt

Description
Conditional assembly
Syntax
iflt <expression> or iflt <expression>
instructions instructions
endc elsec
instructions
endc
Function

The iflt, else and endc directives allow conditional assembly. The iflt
directive is followed by a constant expression. If the result of the
expression is less than zero, the following instructions are assembled
up to the next matching endc or elsec directive; otherwise, the follow-
ing instructions up to the next matching endc or elsec directive are
skipped.

If the iflt statement ends with an elsec directive, the expression result is
inverted and the same process applies to the following instructions up to
the next matching endc. So, if the iflt expression was less than zero,
the instructions between elsec and endc are skipped; otherwise, the
instructions between elsec and endc are assembled. An elsec directive
appliesto the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
iflt offset-127 ; if offset small enough
incx ; increment X register
elsec ; otherwise
addptroffset ; call a macro
endc

See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 199

C Library - ifndef
Ifndef

Description
Conditional assembly
Syntax
ifndef <label> or ifndef <label>
instructions instructions
endc elsec
instructions
endc
Function

The ifndef, else and endc directives alow conditional assembly. The
ifndef directive is followed by a label <label>. If <label> is not
defined, the following instructions are assembled up to the next match-
ing endc or elsec directive; otherwise, the following instructions up to
the next matching endc or elsec directive are skipped. <label> must be
first defined. It cannot be aforward reference.

If the ifndef statement ends with an elsec directive, the expression
result isinverted and the same process applies to the following instruc-
tions up to the next matching endif. So, if the ifndef expression was not
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifndefoffsetl ; if offsetl is not defined
addptroffset2 ; call a macro
elsec ; otherwise
addptroffsetl ; call a macro
endif
See Also

ifdef, elsec, endc, clist

200 Using The Assembler © 2003 COSMIC Software

C Library - ifne

Ifne

Description
Conditional assembly
Syntax
ifne <expression> or ifne <expression>
instructions instructions
endc elsec
instructions
endc
Function

The ifne, elsec and endc directives allow conditional assembly. The
ifne directive is followed by a constant expression. If the result of the
expression is not equal to zero, the following instructions are assem-
bled up to the next matching endc or elsec directive; otherwise, the fol-
lowing instructions up to the next matching endc or elsec directive are
skipped.

If the ifne statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifne expression was not equal to
zero, the instructions between elsec and endc are skipped; otherwise,
the instructions between elsec and endc are assembled. An elsec direc-
tive applies to the closest previousif directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifne offset ; if offset not nul
add #offset ; add to accu
elsec ; otherwise
tsta ; just test it
endc

See Also

elsec, endc, clist

© 2003 COMIC Software Using The Assembler 201

C Library - ifnc

Ifnc

Description
Conditional assembly
Syntax
ifnc <stringl>,string2> orifnc <stringl><string2>
instructions instructions
endc elsec
instructions
endc
Function

The ifnc, elsec and endc directives allow conditional assembly. The
ifnc directive is followed by a constant expression. If <stringl> and
<string2> are differents, the following instructions are assembled up to
the next matching endc or elsec directive; otherwise, the following
instructions up to the next matching endc or elsec directive are skipped.

If the ifnc statement ends with an elsec directive, the expression result
isinverted and the same process applies to the following instructions up
to the next matching endc. So, if the ifnc expression was not zero, the
instructions between elsec and endc are skipped; otherwise, the instruc-
tions between elsec and endc are assembled. An elsec directive applies
to the closest previous if directive.

Theif directives may be nested. The skipped lines may or may not bein
the listing depending on the clist directive status.

Example
ifnc “hello”, \2
addptroffset ; call a macro
else ; otherwise
incx ; increment X register
endif
See Also

elsec, endc, clist

202 Using The Assembler © 2003 COSMIC Software

C Library - include

Description

Include text from another text file

Syntax

Include

| include "filename"

Function

The include directive causes the assembler to switch its input to the
specified filename until end of fileis reached, at which point the assem-
bler resumes input from the line following the include directive in the
current file. The directive is followed by a string which gives the name
of the file to be included. This string must match exactly the name and
extension of the file to be included; the host system convention for
uppercase/lowercase characters should be respected.

Example
include
include
include
include

© 2003 COSMIC Software

“datstr”
“bldstd”
“matmac”
“ports82” ;

, use
; use
, use

use

data structure library
current build standard
maths macros

ports definition

Using The Assembler 203

C Library - lit
lit

Description
Give atext equivalent to a symbol

Syntax
‘ label: lit “string” l

Function
The lit directive is used to associate a text string to a symbol (label).
This symboal is replaced by the string content when parsed in any
assembler instruction or directive.

Example
nbr: Tlit “H#5”
ldx nbr ; expand as “ldx #5”
See Also
equ, set

204 Using The Assembler © 2003 COSMIC Software

C Library - list

list
Description

Turn on listing during assembly.

Syntax
| list

Function
Thelist directive controlsthe parts of the program which will be written

tothelisting file. It is effective if and only if listings are requested; it is
ignored otherwise.

Example
list ; expand source code until end or nolist
dc.b 1,2,4,8,16
end

See Also
nolist

© 2003 COMIC Software Using The Assembler 205

C Library - local

local

Description

Create anew local block

Syntax

‘ local

Function

The local directive is used to create a new local block. When the local
directive is used, all temporary labels defined before the local directive
will be undefined after the local label. New local labels can then be
defined in the new local block. Local labels can only be referenced
within their own local block. A local label block is the area between
two standard |abels or local directives or a combination of the two.

Example
var: ds.b 1
var2: ds.b 1

functionl:

10%: Ida
beq
sta

local

10%: Ida
beq
sta
rts

206 Using The Assembler

var
10%
var2

var2
10%$
var

© 2003 COSMIC Software

C Library - macro

macr o

Description
Define amacro

Syntax

label: macro
<macro_body>
endm

Function
The macro directive is used to define a macro. The name may be any
previously unused name, a name aready used as a macro, or an instruc-
tion mnemonic for the microprocessor.

Macros are expanded when the name of a previously defined macro is
encountered. Operands, where given, follow the name and are separated
from each other by commas.

The <argument_list> is optional and, if specified, is declaring each
argument by name. Each argument name is prefixed by a\ character,
and separated from any other name by a comma. An argument name is
an identifier which may contain . and _ characters.

The <macro_body> consists of a sequence of instructions not including
the directives macro or endm. It may contain macro variables which
will be replaced, when the macro is expanded, by the corresponding
operands following the macro invocation. These macro variables take
the form\1 to \9 to denote the first to ninth operand respectively and \A
to \Z to denote the tenth to 35th operand respectively, if the macro has
been defined without any <argument_list>. Otherwise, macro variables
are denoted by their name prefixed by a\ character. The macro variable
name can al so be enclosed by parenthesisto avoid unwanted concatena-
tion with the remaining text. In addition, the macro variable \# contains
the number of actual operands for a macro invocation.

The specia parameter * isexpanded to the full list of passed arguments
separated by commas.

© 2003 COMIC Software Using The Assembler 207

C Library - macro

The specia parameter \O corresponds to an extension <ext> which may
follow the macro name, separated by the period character *.". For more
information, see “Macro Instructions’ on page 165

A macro expansion may be terminated early by using the mexit direc-
tive which, when encountered, acts as if the end of the macro has been
reached.

The sequence ‘\@ may beinserted in alabel in order to alow aunique
name expansion. The sequence ‘\@ will be replaced by a unique
number.

A macro can not be defined within another macro.

Example
; define a macro that places the length of a string
; In a byte in front of the string using numbered syntax

Itext:macro

dc.b \@2-\@1
\@1:

dc.b \1 ; text given as First operand
\@2:

endm

; define a macro that places the length of a string
in a byte in front of the string using named syntax

Itext:macro \string
dc.b \@2-\@1

\@1:
dc.b \string ; text given as first operand
\@2:
endm
See Also
endm, mexit

208 Using The Assembler © 2003 COSMIC Software

C Library - messg

Messy

Description
Send a message out to STDOUT

Syntax

messg ‘“‘<text>”’
messg “<text>’

Function
The messg directive is used to send a message out to the host system’s

standard output (STDOUT).

Example
messg “Test code for debug”
Ida _#2
sta _SCR

See Also
title

© 2003 COMIC Software Using The Assembler 209

I!il C Library - mexit

mexit

Description
Terminate amacro definition

Syntax

‘ mexit

Function
The mexit directive is used to exit from a macro definition before the
endm directive is reached. mexit is usualy placed after a conditional
assembly directive.

Example
ctrace:macro
if tflag == 0

mexit
endif
Jjsr\1
endm
See Also
endm, macro

210 Using The Assembler © 2003 COSMIC Software

C Library - mlist

mlist

Description
Turn on or off listing of macro expansion.

Syntax
| nmlist [on]off]

Function
Themlist directive controls the parts of the program which will be writ-
ten to the listing file produced by a macro expansion. It is effective if
and only if listings are requested; it isignored otherwise.

The parts of the program to be listed are the lines which are assembled
in amacro expansion.

See Also

macro

© 2003 COMIC Software Using The Assembler 211

C Library - nolist

nolist

Description
Turn off listing.

Syntax

‘ nolist

Function
The nalist directive controls the parts of the program which will be not
written to the listing file until an end or alist directive is encountered. It
iseffectiveif and only if listings are requested; it isignored otherwise.

See Also
list

Note

For compatibility with previous assemblers, the directive nol is dias to
nolist.

212 Using The Assembler © 2003 COSMIC Software

C Library - nopage

nopage
Description
Disable pagination in the listing file

Syntax

| nopage

Function
The nopage directive stops the pagination mechanism in the listing out-
put. It isignored if no listing has been required.

Example
xref mult, div
nopage
ds.b charin, charout
ds.w a, b, sum

See Also

plen, title

© 2003 COMIC Software Using The Assembler 213

C Library - offset
offset

Description
Creates absolute symbols

Syntax

‘ offset <expresion>

Function

The offset directive starts an absol ute section which will only be used to
define symbols, and not to produce any code or data. This section starts
at the address specified by <expression>, and remains active while no
directive or instructions producing code or data is entered. This abso-
lute section is then destroyed and the current section is restored to the
one which was active when the offset directive has been entered. All the
labels defined is this section become absolute symbols.

<expression> must be a valid absolute expression. It must not contain
any forward or external references.

Example

offsetO

next:
ds.b 2

buffer:
ds.b 80

size:
1dx next ; ends the offset section

214 Using The Assembler © 2003 COSMIC Software

C Library - org

org

Description
Sets the location counter to an offset from the beginning of a section.

Syntax

| org <expresion>

Function
<expression> must be a valid absolute expression. It must not contain

any forward or external references.

For an absolute section, the first org before any code or data defines the
starting address.

An org directive cannot define an address smaller than the location
counter of the current section.

Any gap created by an org directive is filled with the byte defined by
the -f option.

© 2003 COMIC Software Using The Assembler 215

C Library - page
page

Description
Start anew pagein thelisting file

Syntax
‘ page

Function
The page directive causes aformfeed to be inserted in the listing output
if pagination is enabled by either atitle directive or the -ft option.

Example
xref mult, div
page
ds.b charin, charout
ds.w a, b, sum

See Also
plen, title

216 Using The Assembler © 2003 COSMIC Software

C Library - plen

plen

Description
Specify the number of lines per pagesin thelisting file

Syntax
| plen <page_length>

Function

The plen directive causes <page length> lines to be output per pagein
the listing output if pagination is enabled by either atitle directive or
the -ft option. If the number of lines aready output on the current page
is less than <page length>, then the new page length becomes effec-
tive with <page length>. If the number of lines already output on the
current page is greater than or equal to <page_|length>, a new page will
be started and the new page length is set to <page_length>.

Example
plen 58

See Also
page

© 2003 COMIC Software Using The Assembler 217

C Library - repeat
repeat

Description
Repeat alist of lines a number of times

Syntax

repeat <expression>
repeat_body
endr

Function
Therepeat directive is used to cause the assembler to repeat the follow-
ing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the expression
operand. The repeat directive is equivalent to a macro definition fol-
lowed by the same number of calls on that macro.

A repeat directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been
reached.

Example
; shift a value n times
asIn: macro
repeat \1
aslb
endr
endm

; use of above macro
asln 5

See Also
endr, repeatl, rexit

218 Using The Assembler © 2003 COSMIC Software

C Library - repeatl

repeatl

Description
Repeat alist of lines a number of times

Syntax

repeatl <arguments>
repeat_body
endr

Function

The repeat! directive is used to cause the assembler to repeat the fol-
lowing list of source line up to the next endr directive. The number of
times the source lines will be repeated is specified by the number of
arguments, separated with commas (with a maximum of 36 arguments)
and executed each time with the value of an argument. The repeatl!
directive is equivaent to a macro definition followed by the same
number of calls on that macro with each time a different argument. The
repeat argument is denoted \1 unless the argument list is starting by a
name prefixed by a\ character. In such a case, the repeat argument is
specified by its name prefixed by a\ character.

A repeatl directive may be terminated early by using the rexit directive
which, when encountered, acts as if the end of the repeatl has been

reached.
Example

; test a value using the numbered syntax
repeatl 1,2,3
add #\1 ; add to accu
endr
end

or

; test a value using the named syntax

repeatl \count,1,2,3

add #\count ; add to accu
endr

end

© 2003 COMIC Software Using The Assembler 219

C Library - repeatl

will both produce:

2 ; test a value
9 0000 ab01 add #1; add to accu
9 0002 ab02 add #2; add to accu
9 0004 ab03 add #3; add to accu
10 end

See Also

endr, repeat, rexit

220 Using The Assembler © 2003 COSMIC Software

C Library - restore

restore

Description
Restore saved section

Syntax

| restore

Function
The restore directive is used to restore the last saved section. This is

equivalent to a switch to the saved section.

Example
switch.bss
var: ds.b 1
var2: ds.b 1
save
switch .text

functionl:

10$: Ida var
beq 10%
sta var2

function2:

10$: Ida var2
sub var
bne 10%
rts
restore

var3: ds.b 1
var4: ds.b 1

switch .text

Ida var3
sta var4
end
See Also
save, section

© 2003 COMIC Software Using The Assembler 221

I!il C Library - rexit

rexit

Description
Terminate arepeat definition

Syntax

‘ rexit

Function
The rexit directive is used to exit from arepeat definition before the
endr directive is reached. rexit is usually placed after a conditional
assembly directive.

Example
; shift a value n times
asln: macro
repeat \1
if\1==0
rexit
endif
aslb
endr
endm

; use of above macro
asin 5

See Also
endr, repeat, repeatl

222 Using The Assembler © 2003 COSMIC Software

C Library - save

Description
Save section

Syntax

save

| save

Function

The save directive is used to save the current section so it may be

restored later in the sourcefile.

Example

switch.bss

var: ds.b 1

var2: ds.b 1
save
switch .text

functionl:

10$: Ida var
beq 10%
sta var2

function2:

10$: Ida var2
sub var
bne 10%
rts
restore

var3: ds.b 1

var4d: ds.b 1
switch .text
lda var3
sta var4

end

See Also

restore, section

© 2003 COSMIC Software

Using The Assembler 223

C Library - section

section

Description
Define anew section

Syntax

‘ <section_nhame>: section [<attributes>]

Function

The section directive defines a new section, and indicates that the fol-
lowing program is to be assembled into a section named
<section_name>. The section directive cannot be used to redefine an
aready existing section. If no name and no attributes are specified to
the section, the default is to defined the section as atext section with its
same attributes. It is possible to associate <attributes> to the new sec-
tion. An attribute is either the name of an existing section or an attribute
keyword. Attributes may be added if prefixed by a‘+' character or not
prefixed, or deleted if prefixed by a‘-' character. Severa attributes may
be specified separated by commas. Attribute keywords are:

abs absolute section

bss bss style section (no data)

hilo values are stored in descending order of significance
even enforce even starting address and size

zpage | enforce 8 bit relocation

long enforce 32 bit relocation

bit bit section

Example
CODE: section.text; section of text
labl: ds.b 5
DATA: section.data; section of data
lab2: ds.b 6
switchCODE
lab3: ds.b 7
switchDATA

224 Using The Assembler © 2003 COSMIC Software

C Library - section

lab4: ds.b 8

This will place labl and then 1ab3 into consecutive locations in sec-
tion CODE and lab2 and lab4 in consecutive locations in section
DATA.

.frame:section.bsct,even

The .frame section is declared with same attributes than the .bsct sec-
tion and with the even attribute.

_bit: section+zpage,+even,-hilo

The .hit section is declared using 8 hit relocation, with an even align-
ment and storing data with an ascending order of significance.

When the -m option is used, the section directive also accepts a number
as operand. In that case, alabelled directive is considered as a section
definition, and an unlabelled directive is considered as a section open-
ing (switch).

.rom: sectionl ; define section 1
nop
.ram: section2 ; define section 2
dc.b 1
sectionl ; switch back to section 1
nop

It is still possible to add attributes after the section number of a section
definition line, separated by a comma.

See Also
switch, bsct

© 2003 COMIC Software Using The Assembler 225

CLibrary - set

Set

Description

Give aresetable value to a symbol
Syntax

‘ label: set <expression>
Function

The set directive allows a value to be associated with a symbol. Sym-
bols declared with set may be altered by a subsequent set. The equ
directive should be used for symbols that will have a constant value.
<expression> must be fully defined at the time the equ directive is
assembl ed.

Example
OFST: set 10

See Also
equ, lit

226 Using The Assembler © 2003 COSMIC Software

C Library - spc

SPC

Description
Insert a number of blank lines before the next statement in the listing
file.

Syntax

| spc <num_lines>

Function
The spc directive causes <num_lines> blank lines to be inserted in the
listing output before the next statement.

Example
spc 5
title “new file”

If listing is requested, 5 blank lines will be inserted, then the title will be
output.

See Also
title

© 2003 COMIC Software Using The Assembler 227

C Library - switch

switch

Description
Place code into a section.

Syntax

‘ switch <section_name>

Function
The switch directive switches output to the section defined with the
section directive. <section_name> is the name of the target section,
and has to be aready defined. All code and data following the switch
directive up to the next section, switch, bsct or end directive are placed
in the section <section_name>.

Example
switch.bss
buffer:ds.b 512
xdef buffer

Thiswill place buffer into the .bss section.

See Also

section, bsct

228 Using The Assembler © 2003 COSMIC Software

C Library - tabs

tabs

Description
Specify the number of spaces for atab character in the listing file

Syntax

| tabs <tab_size>

Function
The tabs directive sets the number of spacesto be substituted to the tab
character in the listing output. The minimum value of <tab size> is0
and the maximum value is 128.

Example
tabs 6

© 2003 COMIC Software Using The Assembler 229

C Library - title
title

Description

Define default header
Syntax

‘ title "name"
Function

Thetitle directive is used to enable the listing pagination and to set the
default page header used when a new page is written to the listing out-
put.

Example
title “My Application”

See Also
page, plen

Note

For compatibility with previous assemblers, the directive ttl is aias to
title.

230 Using The Assembler © 2003 COSMIC Software

C Library - xbit

Xbit
Description

Declare bit symbol as being defined el sewhere

Syntax
| xbit[.b] identifier[,identifier..._]

Function
Visihility of bit symbols between modules is controlled by the xref and
xbit directives. Symbols which are defined in other modules must be
declared as xbit. A symbol may be declared both xdef and xbit in the
same module, to allow for usage of common headers.

The directive xbit.b declares external symbols located in the .bsct sec-

tion.
Example
xbit otherprog
xbit_bzpage ; is in .bsct section
See Also
xdef, xref

© 2003 COMIC Software Using The Assembler 231

C Library - xdef
xdef

Description
Declare avariable to be visible

Syntax
‘ xdef identifier[,identifier.._]

Function
Visibility of symbols between modules is controlled by the xdef and
xref directives. A symbol may only be declared as xdef in one module.
A symbol may be declared both xdef and xref in the same module, to
alow for usage of common headers.

Example
xdef sqgrt ; allow sqgrt to be called
; from another module
sqrt: ; routine to return a square root
; of a number >= zero

See Also
xbit, xref

232 Using The Assembler © 2003 COSMIC Software

C Library - xref

Xr ef

Description
Declare symbol as being defined el sewhere

Syntax
| xref[.b] identifier[,identifier..._]

Function
Visibility of symbols between modules is controlled by the xref and
xdef directives. Symbols which are defined in other modules must be
declared as xref. A symbol may be declared both xdef and xref in the
same module, to allow for usage of common headers.

The directive xref.b declares external symbols located in the .bsct sec-

tion.
Example
xref otherprog
xref._bzpage ; is in .bsct section
See Also
xbit, xdef

© 2003 COMIC Software Using The Assembler 233

CHAPTER

6

Using The Linker

This chapter discusses the clnk linker and details how it operates. It
describes each linker option, and explains how to use the linker's many
specia features. It aso provides example linker command lines that
show you how to perform some useful operations. This chapter includes
the following sections;

* Introduction

* Overview

» Linker Command File Processing
e Linker Options

» Section Relocation

e Setting Bias and Offset

e Linking Objects

» Linking Library Objects

* Automatic Data Initialization

e Shared Data Handling

© 2003 COSMIC Software Using The Linker 235

* DEFsand REFs
e Specia Topics
e Description of The Map File

e Linker Command Line Examples

236 Using The Linker © 2003 COSMIC Software

Introduction

Introduction

The linker combines relocatable object files, selectively loading from
libraries of such files made with clib, to create an executable image for
standal one execution or for input to other binary reformatters.

clnk will also alow the object image that it creates to have local symbol
regions, so the same library can be loaded multiple times for different
segments, and so that more control is provided over which symbols are
exposed. On microcontroller architectures this feature is useful if your
executable image must be loaded into several noncontiguous areas in
memory.

NOTE

The terms “ segment” and “ section” refer to different entities and are
carefully kept distinct throughout this chapter. A “ section” is a contigu-
ous subcomponent of an object module that the linker treats as indivisi-
ble.

The assembler creates several sections in each object module. The
linker combines input sections in various ways, but will not break one
up. Thelinker then maps these combined input sections into output seg-
ments in the executable image using the options you specify.

A “segment” is a logically unified block of memory in the executable
image. An example is the code segment which contains the executable
instructions.

For most applications, the “ sections” in an object module that the linker
accepts as input are equivalent to the “segments’ of the executable
image that the linker generates as output.

© 2003 COSMIC Software Using The Linker 237

n Overview

Overview

You use the linker to build your executable program from a variety of
modules. These modules can be the output of the C cross compiler, or
can be generated from handwritten assembly language code. Some
modules can be linked unconditionally, while others can be selected
only as needed from function libraries. All input to the linker, regard-
less of its source, must be reduced to object modules, which are then
combined to produce the program file.

The output of the linker can be in the same format as its input. Thus, a
program can be built in several stages, possibly with special handling at
some of the stages. It can be used to build freestanding programs such
as system bootstraps and embedded applications. It can also be used to
make object modules that are loaded one place in memory but are
designed to execute somewhere else. For example, a data segment in
ROM to be copied into RAM at program startup can be linked to run at
its actual target memory location. Pointers will be initialized and
address references will bein place.

As a side effect of producing files that can be reprocessed, clnk retains
information in the final program file that can be quite useful. The sym-
bol table, or list of external identifiers, is handy when debugging pro-
grams, and the utility cobj can be made to produce a readable list of
symbols from an object file. Finaly, each object module has in its
header useful information such as segment sizes.

In most cases, the final program file created by clnk is structurally iden-
tical to the object module input to clnk. The only difference is that the
executable file is complete and contains everything that it needs to run.
There are a variety of utilities which will take the executable file and
convert it to a form required for execution in specific microcontroller
environments. The linker itself can perform some conversions, if all
that is required is for certain portions of the executable file to be
stripped off and for segments to be relocated in a particular way. You
can therefore create executable programs using the linker that can be
passed directly to aPROM programmer.

238 Using The Linker © 2003 COSMIC Software

Overview

The linker works as follows:

e Options applying to the linker configuration. These options are
referred to in this chapter as “ Global Command Line Options’ on
page 243.

» Command file options apply only to specific sections of the object
being built. These options are referred to in this chapter as “ Seg-
ment Control Options’ on page 244.

» Sections can be relocated to execute at arbitrary placesin physical
memory, or “stacked” on suitable storage boundaries one after the
other.

« Thefina output of the linker is a header, followed by all the seg-
ments and the symbol table. There may also be an additional
debug symboal table, which contains information used for debug-
ging purposes.

© 2003 COSMIC Software Using The Linker 239

B Linker Command File Processing

Linker Command File Processing

The command file of the linker is a small control language designed to
give the user a great deal of power in directing the actions of the linker.
The basic structure of the command file is a series of command items.
A command item is either an explicit linker option or the name of an
input file (which serves as an implicit directiveto link in that file or, if it
isalibrary, scan it and link in any required modules of the library).

An explicit linker option consists of an option keyword followed by any
parameters that the option may require. The options fall into five
groups:

(+seg <section>) controls the creation of new segments and has
parameters which are selected from the set of local flags.

(+grp <section>) controls the section grouping.

Group 2

(+inc*) is used to include files

Group 3

(+new, +pub and +pri) controls name regions and takes no parame-
ters.

(+def <symbol>) is used to define symbols and aliases and takes one
required parameter, a string of the form identl=ident2, a string of the
form identl=constant, or a string of the form identl=@segment.

(+spc <segment>) is used to reserve space in a particular <segment>
and has a required parameter

A description of each of these command line options appears below.

240 Using The Linker © 2003 COSMIC Software

Linker Command File Processing

The manner in which the linker rel ocates the various sectionsis control-
led by the +seg option and its parameters. If the size of a current seg-
ment is zero when a command to start a new segment of the same name
is encountered, it is discarded. Severa different sections can be redi-
rected directly to the same segment by using the +grp option.

clnk links the <files> you specify in order. If afile is a library, it is
scanned as long as there are modules to load. Only those library mod-
ules that define public symbols for which there are currently outstand-
ing unsatisfied references are included.

Inserting commentsin Linker commands
Each input line may be ended by a comment, which must be prefixed by

a# character. If you have to use the # as a significant character, you can
escape it, using the syntax \#.

Hereis an example for an indirect link file:

Link for EPROM

+seg -text -b0x1000 -n .text
+seg .const -a .text

+seg .bsct -b 0x20 -m 0x100
+seg .ubsct -n iram

+seg .share -a iram -is
\cx32\lib\crts.h05

modl.o mod2.0
\cx32\lib\libi .h05
\cx32\lib\libm.h05

+seg .const -bOx3ff4
vector.o

start eprom address
constants follow program
zero page start address
uninitialized zero page
shared segment

startup object file
input object files

C library

machine library

vectors eprom address
reset and interrupt vectors

HHHFHEHFHHHHHRR

© 2003 COSMIC Software Using TheLinker 241

n Linker Options

Linker Options

The linker accepts the following options, each of which is described in
detail below.

clnk [options] <file.lkf> [<files>]
-bs# bank size
-e* error file name
-1*> library path
-m* map File name
-0* output File name
-p phys addr in map
-s symbol table only
-sa sort symbol by address
-sl output local symbols
-V verbose

The output file name and the link command file must be present on
the command line. The options are described in terms of the two groups
listed above; the global options that apply to the linker, and the segment
control options that apply only to specific segments.

242 Using The Linker © 2003 COSMIC Software

Linker Options

Global Command Line Options
The global command line options that the linker accepts are:

-bs#t set the window shift to #, which implies that the number of
bytes in a window is 2**#. The default value is 0 (bank
switching disabled). For more information, see the section
“ Address Arithmetic” on page 253.

-e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-1*> specify library path. You can specify up to 20 different
paths. Each path is a directory name, not terminated by
any directory separator character.

-m* produce map information for the program being built to
file*.

-0* write output to thefile*. Thisoption isrequired and has no
default value.

-P display symbols with physical address instead of logical

addressin the map file.

-S create an output file containing only an absolute symbol
table, but still with an object file format. The resulting file
can then be used in another link to provide the symbol
table of an existing application.

-Sa display symbols sort by address instead of alphabetic order
in the map file.

-d output local symbolsin the executablefile.

-V be “verbose’.

© 2003 COSMIC Software Using TheLinker 243

n Linker Options

Segment Control Options
This section describes the segment control options that control the

structure of individual segments of the output module.

A group of optionsto control a specific segment must begin with a-+seg
option. Such an option must precede any group of options so that the
linker can determine which segment the options that follow apply to.
The linker allows up to 255 different segments.

+seg <section> <options> start a new segment loading assembler

244 Using The Linker

section type <section> and build it as directed by the
<options> that follow:

make the current segment follow the segment *, where *
refers to a segment name given explicitly by a -n option.
Options -b, -e and -0 cannot be specified if -a has been
specified.

set the physical start address of the segment to *. Option -e
or -a cannot be specified if -b has been specified.

do not output any code/data for the segment.

set the bank size for paged addresses calculation. This
option overwrites the global -bs option for that segment.

set the physical end address of the segment to *. Option -b
or -a cannot be specified if -e has been specified.

fill the segment up to the value specified by the -m option
with bytes whose valueis#. This option has no effect if no
-m option is specified for that segment.

mark the segment as a root segment for the unused section
suppression. This flags is usually applied on the reset and
interrupt vectors section, and as soon as it is specified at
least once in the linker command file, enables the section
suppression mechanism. This option can be used on any
other segment to force the linker to keep it even if it is not
used.

© 2003 COSMIC Software

Linker Options

-i? define the initialization option. Valid options are:

-it use this segment to host the descriptor and
images copies of initialized data used for auto-
matic data initialization

-id initialize this segment

-ib do not initialize this segment

-is mark this segment as shared data

-m* set the maximum size of the segment to * bytes. If not
specify, thereis no checking on any segment size. If a seg-
ment is declared with the -a option as following a segment
which is marked with the -m option, then set the maximum
available space for al the possible consecutive segments.

-n* set the output name of the segment to *. Segment output
names have at most 15 characters; longer names are trun-
cated. If no name is given with a -n option, the segment
inheritates a default name equal to its assembler section
name.

For example, use this option when you want to generate
the hex records for a particular PROM, such as:

+seg .text -b0x2000 -n proml
<object_files>
+seg -text -b0x4000 -n prom2
<object_files>

You can generate the hex records for prom1 by typing:

chex -n proml file_h05 |

For more information, see Chapter 8, “The chex Utility”.

© 2003 COSMIC Software Using TheLinker 245

n Linker Options

-0*

set the logical start address of the segment to * if -b option
is specified or the logical end address if -e option is speci-
fied. The default is to set the logical address equal to the
physical address. Options -b and -e cannot be specified
both if -0 has been specified.

round up the starting address of the segment. The expres-
sion defines the power of two of the alignment value. The
option -r3 will aign the start address to an 8 bytes bound-
ary. This option has no effect if the start address is explic-
itly defined by a-b option.

define a space name for the segment. This segment will be
verified for overlapping only against segments defined
with the same space name. See “Qverlapping Control” on
page 253.

do not verify overlapping for the segment.

set the window size for banked applications, and activate
the automatic bank segment creation.

expandable segment. Allow a segment to spill in the next
segment of the same section type if its size exceeds the
value given by the -m option. The next segment must be
declared before the object causing the overflow. This
option has no effect if no -m option is specified for the
expendable segment. Options -e and -w cannot be speci-
fied.

Options defining a numerical value (addresses and sizes) can be entered
as constant, symbols, or simple expression combined them with ‘+" and
‘-’ operators. Any symbol used has to be defined before to be used,
either by a +def directive or loaded as an absolute symbol from a previ-
ously loaded object file. The operators are applied from left to right
without any priority and parenthesis () are not allowed. Such expres-
sions CANNOT contain any whitespace. For example:

+def START=0x1000
+def MAXSI1ZE=0x2000
+seg -text -bSTART+0x100 -mMAXSIZE-0x100

246 Using The Linker

© 2003 COSMIC Software

Linker Options

The first line defines the symbol START equals to the absolute value
1000 (hex value), the second line defines the symbol MAXSI1ZE equals
to the absolute value 2000 (hex value). The last line opens a .text seg-
ment located at 1100 (hex value) with a maximum size of 1f00 (hex
value). For more information, see the section “Symbol Definition

Option” on page 250.

Unless -b* is given to set the bss segment start address, the bss segment
will be made to follow the last data segment in the output file. Unless
-b* is given to set the data segment start address, the data segment will
be made to follow the last bsct segment in the output file. The bsct and
text segments are set to start at zero unless you specify otherwise by
using -b option. It is permissible for all segments to overlap, as far as
clnk is concerned; the target machine may or may not make sense of
this situation (as with separate instruction and data spaces).

NOTE

A new segment of the specified type will not actually be created if the last
segment of the same name has a size of zero. However, the new options
will be processed and will override the previous values.

Segment Grouping
Different sections can be redirected directly to the same segment with
the +grp directive:

+grp <section>=<section list>

where <section> is the name of the target section, and <section list> a
list of section names separated by commas. When loading an object file,
each section listed in theright part of the declaration will be loaded as if
it was named as defined in the left part of the declaration. The target
section may be a new section name or the name of an existing section
(including the predefined ones). When using a new name, this directive
has to be preceded by a matching +seg definition.

NOTE
Whitespaces are not allowed aside the equal sign ‘=" and the commas.

© 2003 COSMIC Software Using TheLinker 247

n Linker Options

Linking

Files on the Command line

The linker supports linking objects from the command line. The link
command file has to be modified to indicate where the objects are to be
loaded using the following @# syntax.

@1, @2,... include each individual object file at its positional location

on the command line and insert them at the respective
locationsin the link file (@1 is the first object file, and so

on).
@* include al of the objects on the command line and insert
them at thislocation in thelink file.
Example

Linking objects from the command line:

clnk -o test.h05 test.lkf filel.o file2.0

Test_IKkfF:

+seg -text -b0x5000
+seg .data -b0x100
@1

+seg .text -b0x7000
@2

Is equivalent to

clnk -otest.h05 test.Ilkf
test.lkf

+seg -text -b0x5000
+seg .data -b0x100
filel.o

+seg .text -b0x7000
file2.0

Include

Option

Subparts of the link command file can be included from other files by
using the following option:

+inc* include the file specified by *. This is equivalent to

expanding the text file into the link file directly at the loca-
tion of the +inc line.

248 Using The Linker © 2003 COSMIC Software

Linker Options

Example
Includethefile“seg2.txt” inthelink file“test. Ikf":

Test.lkf:

+seg -text -b0x5000
+seg -data -b0x100
filel.o file2.0
+seg -text -b0x7000
+inc seg2.txt

seQg2.txt:
modl.o0 mod2.o0 mod3.o

Resultant link file
+seg -text -b0x5000
+seg -data -b0x100
filel.o file2.0

+seg -text -b0x7000
modl.o mod2.o0 mod3.0

Private Region Options
Options that control code regions are:

+new start a new region. A “region” is a user definable group of
input object modules which may have both public and pri-
vate portions. The private portions of aregion are loca to
that region and may not access or be accessed by anything
outside the region. By default, anew region is given public

access.
+pub make the following portion of a given region public.
+pri make the following portion of a given region private.

© 2003 COSMIC Software Using The Linker 249

n Linker Options

Symbol Definition Option
The option controlling symbol definition and aliasesis:

+def* define new symbols to the linker. The string * must be of
the form:

250 Using The Linker

ident=constant where ident is a valid identifier and
constant is a valid constant expressed with the standard
C language syntax. Thisform is used to add ident to the
symbol table as a defined absolute symbol with avaue
equal to constant.

ident=constant:bitnum where ident is a valid
identifier, constant is a valid constant expressed with
the standard C language syntax and bithum a constant
expression between 0 and 7. This form is used to add
ident to the symbol table as a defined absolute bit sym-
bol with a value equal to constant 3-bit left shifted and
or’ed with bitnum.

ident1l=ident2 where identl and ident2 are both
valid identifiers. Thisform is used to define aliases. The
symbol identl is defined as the dias for the symbol
ident2 and goes in the symbol table as an external DEF
(a DEF is an entity defined by a given module) If
ident2 is not already in the symbol table, it is placed
there as a REF (a REF is an entity referred to by agiven
module).

ident1l=ident2:bitnum where identl and ident2
are both valid identifiers, and bitnum a constant
between 0 and 7. Thisform is used to define bit aliases.
The symbol ident1 is defined as the dias for the corre-
sponding bit of symbol ident2 which cannot be already
a bit symbol itself, and goes in the symbol table as an
external DEF (a DEF is an entity defined by a given
module.) If ident2 is not already in the symbol table, it
is placed there as a REF (a REF is an entity referred to
by a given module).

© 2003 COSMIC Software

Linker Options

« ident=@section where ident is a valid identifier,
and section is the name of a section specified asthefirst
argument of a +seg directive. This form is used to add
ident to the symbol table as a defined symbol whose
value is the address of the next byte to be loaded in the
specified section.

« ident=start(segment) where segment is the name
given to asegment by the -n option. Thisform is used to
add ident to the symbol table as a defined symbol whose
value is the logical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

« ident=end(segment) where segment is the name
given to asegment by the -n option. Thisform is used to
add ident to the symbol table as a defined symbol whose
value is the logical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

« ident=pstart(segment) where segment is the name
given to asegment by the -n option. Thisform isused to
add ident to the symbol table as a defined symbol whose
value isthe physical start address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

« ident=pend(segment) where segment is the name
given to asegment by the -n option. Thisform is used to
add ident to the symbol table as a defined symbol whose
value is the physical end address of the designated seg-
ment. This directive can be placed anywhere in the link
command file, even before the segment is defined.

+ ident=size(segment) where segment is the name
given to asegment by the -n option. Thisform is used to
add ident to the symbol table as a defined symbol whose
value is the size of the designated segment. This direc-
tive can be placed anywhere in the link command file,
even before the segment is defined.

© 2003 COSMIC Software Using The Linker 251

n Section Relocation

NOTE
Whitespaces are not allowed aside the equal sign ‘=".

For more information about DEFs and REFs, refer to the section “ DEFs
and REFS’ on page 259.

Reserve Space Option
The following option is used to reserve space in a given segment:

+5pc <segment>=<value> reserve <value> bytes of space at the
current location in the segment named < segment>.

+spC <segment>=@section reserve a space at the current location
in the segment named <segment> equal to the current size
of the opened segment where the given section is loaded.
The size is evaluated at once, so if the reference segment
grows after that directive, there is no further modification
of the space reservation. If such a directive is used to
duplicate an existing section, it has to be placed in the link
command file after al the object files.

NOTE
Whitespaces are not allowed aside the equal sign ‘=".

Section Relocation

The linker relocates the sections of the input files into the segments of
the output file.

An absolute section, by definition, cannot and should not be relocated.
The linker will detect any conflicts between the placement of this file
and its absolute address given at compile/assemble time.

In the case of abank switched system, it is sill possible for an absolute
section to specify a physical address different from the one and at com-
pile/assembly time, the logical address MUST match the one specified
at compile/assemble time.

252 Using The Linker © 2003 COSMIC Software

Setting Bias and Offset

Address Arithmetic
The two most important parameters describing a segment are its bias

and its offset, respectively its physical and logical start addresses. In
nonsegmented architecturesthere is no distinction between bias and off-
set. The bias is the address of the location in memory where the seg-
ment is relocated to run. The offset of a segment will be equal to the
bias. In this case you must set only the bias. The linker sets the offset
automatically.

In segmented architectures, the fundamental relationship between the
bias and the offset is:

bias = (SR << BS) + offset

where SR is the actual value used in a segment or page register and BS
is the window shift value you specify with the -bs# option. The linker
will be able to compute the value of the page register, given the bias and
the offset of any segment.

In nonsegmented architectures both BS and SR are usually equal to
zero, so the formula becomes:

bias = offset

Overlapping Control

The linker is verifying that a segment does not overlap any other one,
by checking the physical addresses (bias). This control can be locally
disabled for one segment by using the -v option. For targets implement-
ing separated address spaces (such as bank switching), the linker allows
several segments to be isolated from the other ones, by giving them a
space name with the -s option. In such a case, a segment in a named
space is checked only against the other segments of the same space. The
unnamed segments are checked together.

Setting Bias and Offset

The bias and offset of a segment are controlled by the -b* option and
-0* option. The rules for dealing with these options are described
below.

© 2003 COSMIC Software Using The Linker 253

n Setting Bias and Offset

Setting the Bias
If the -b* option is specified, the biasis set to the value specified by *.
Otherwise, the bias is set to the end of the last segment of the same
name. If the -e* option is specified, the bias is set to value obtain by
subtracting the segment size to the value specified by *.

Setting the Offset
If the -0* option is specified, the offset is set to the value specified by *.
Otherwise, the offset is set equal to the bias.

Using Default Placement

If none of -b, -e or -0 options is specified, the segment may be placed
after another one, by using the -a* option, where * is the name of
another segment. Otherwise, the linker will try to use a default place-
ment based on the segment name. The compiler produces specific sec-
tions for code (.text) and data (.data, .bss, .bsct and .ubsct). By default,
.text and .bsct segments start at zero, .ubsct segment follows the latest
.bsct segment, .data segment follows the latest .ubsct segment, and .bss
segment follows the latest .data segment. Note that there is no default
placement for the constants segment .const and the bit segment .bit.

Bit Segment Handling
Bit segments are alocated using bit addresses. A bit addressis avalue

based on the byte address and the bit number in this byte. The bit
address is equal to the byte address 3-hit left shifted or’ed with the bit
number. The bias (or offset) value can be entered directly as a hit
address or with a special syntax combining the byte address and the bit
number. The following lines are identical:

+seg .bit -b 0x103
+seg -bit -b 0x20:3

When using the -a option, the linker automatically converts byte
address to bit address when entering a bit segment from a byte segment,
starting at bit 0, and converts a bit address to a byte address when leav-
ing a bit segment to a byte segment, starting from next available byte.

Bit addresses are displayed in the map file using the combined syntax.

254 Using The Linker © 2003 COSMIC Software

Linking Objects

Linking Objects

A new segment is built by concatenating the corresponding sections of
the input object modules in the order the linker encounters them. As
each input section is added to the output segment, it is adjusted to be
relocated relative to the end portion of the output segment so far con-
structed. The first input object module encountered is rel ocated relative
to avalue that can be specified to the linker. The size of the output bss
segment is the sum of the sizes of the input bss sections.

Unless the -v option has been specified on a segment definition, the
linker checks that the segment physical address range does not overlap
any other segment of the application. Logical addresses are not checked
as bank switching creates several segments starting at the same logical
address.

Linking Library Objects

The linker will selectively include modules from a library when out-
standing references to member functions are encountered. The library
file must be place after all objects that may call it's modules to avoid
unresolved references. The standard ANSI libraries are provided in two
versions to provide the level of support that your application needs.
This can save a significant amount of code space and execution time
when full ANSI single precision floating point support is not needed.
The first letter after “lib” in each library file denotes the library type (f
for single precision, and | for integer). See below.

libf.hO5 Single Precision Library. This library is used for applica-
tions where only single precision floating point support is
needed. Link this library before the other libraries when
only single precision floats are used.

libi.n05 Integer only Library. This library is designed for applica-
tions where no floating point is used. Floats can till be
used for arithmetic but not with the standard library. Link
this library before the other libraries when only integer
libraries are needed.

© 2003 COSMIC Software Using TheLinker 255

n Linking Library Objects

Library Order
You should link your application with the libraries in the following
orders:

Integer Only Single Precision

Application Float Application
libi.h05 libf.h05
libm.h05 libi.h05
libm.h05

For more information, see “Linker Command Line Examples’ on page
266.

256 Using The Linker © 2003 COSMIC Software

Automatic Data Initialization

Automatic Data Initialization

The linker is able to configure the executable for an automatic data ini-
tialization. This mechanism is initiated automatically when the linker
finds the symbol __idesc__ in the symbol table, as an undefined sym-
bal. clnk first locates a segment behind which it will add an image of
the data, so called the host segment. The default behaviour is to select
the first .text segment in the executable file, but you can override this by
marking one segment with the -it option.

Then, clnk looks in the executable file for initialized segments. All the
segments .data and .bsct are selected by default, unless disabled explic-
itly by the -ib option. Otherwise, renamed segments may aso be
selected by using the -id option. The -id option cannot be specified on a
bss segment, default or renamed. Once all the selected segments are
located, clnk builds a descriptor containing the starting address and
length of each such segment, and moves the descriptor and the selected
segments to the end of the host segment, without relocating the content
of the selected segments.

For more information, see “Generating Automatic Data Initialization”
in Chapter 2 and “Initializing data in RAM” in Chapter 3.

Descriptor Format
The created descriptor has the following format:

dc.w start_prom_address ;starting address of the
; First image in prom
; for each segment:

dc.b flag ; segment type
dc.w start_ram_address ; start address of segment in ram
dc.w end_prom_address ; address of last data byte

; plus one in prom
; after the last segment:
dc.b O

The flag byte is used to detect the end of the descriptor, and also to
specify a type for the data segment. The actual value is equa to the
code of thefirst letter in the segment name.

The end address in PROM of one segment gives also the starting
address in prom of the following segment, if any.

© 2003 COSMIC Software Using TheLinker 257

n Shared Data Handling

The address of the descriptor will be assigned to the symbol __idesc__,
which is used by the crtsi.s startup routine. So all this mechanism will
be activated just by linking the crtsi.h05file with the application, or by
referencing the symbol __idesc__ in your own startup file.

If the host segment has been opened with a -m option giving a maxi-
mum size, clnk will check that there is enough space to move all the
selected segments.

Shared Data Handling

When the compiler is run with a static model allowing shared data,
each function not using the stack (nostack function) reserves a memory
area but does not alocate it. Based on the information received from the
debug symbol table, the linker is able to allocate all these areas by over-
lapping those areas corresponding to independent functions, i.e. these
functions that never call each other directly or through other functions.
This feature saves memory while keeping the ability to use arguments
and local variables in nostack functions.

NOTE
Recursive functions cannot be selected as nostack functions.

Thelinker will allocate the global amount of memory in a segment pro-
vided by the user. This segment is marked with the -is option, and hasto
be empty. It is located like all other segments using either -b or -a
options, as shown in the following example:

+seg .text -b0x1000

+seg .data -b0x100

+seg .shared -bOx80 -mOx80 -is
filel file2

Object filesfilel and file2 should not produce any datain a .shared sec-
tion, otherwise the linker will complain and abort the linking process.

258 Using The Linker © 2003 COSMIC Software

DEFs and REFs

DEFs and REFs

The linker builds a new symbol table based on the symbol tablesin the
input object modules, but it is not a simple concatenation with adjust-
ments. There are two basic type of symbols that the linker puts into its
internal symbol table: REFs and DEFs. DEFs are symbols that are
defined in the object module in which they occur. REFs are symbols
that are referenced by the object module in which they occur, but are
not defined there.

The linker also builds a debug symbol table based on the debug symbol
tables in any of the input object modules. It builds the debug symbol
table by concatenating the debug symbol tables of each input object
module in the order it encounters them. If debugging is not enabled for
any of input object module, the debug symbol table will be of zero
length.

Anincoming REF is added to the symbal table as a REF if that symbol
is not aready entered in the symbol table; otherwise, it isignored (that
reference has aready been satisfied by a DEF or the reference has
aready been noted). An incoming DEF is added to the symbol table as
a DEF if that symbol is not aready entered in the symbol table; its
value is adjusted to reflect how the linker is relocating the input object
module in which it occurred. If it is present as a REF, the entry is
changed to a DEF and the symbol’s adjusted value is entered in the
symbol table entry. If it is present as a DEF, an error occurs (multiply
defined symbol).

When the linker is processing a library, an object module in the library
becomes an input object module to the linker only if it has at |east one
DEF which satisfies some outstanding REF in the linker's internal sym-
bol table. Thus, the simplest use of clnk is to combine two files and
check that no unused references remain.

The executable file created by the linker must have no REFsin its sym-
bol table. Otherwise, the linker emits the error message “ undefined sym-
bol” and returns failure.

© 2003 COSMIC Software Using The Linker 259

n Special Topics

Special Topics

This section explains some special linker capabilities that may have
limited applicability for building most kinds of microcontroller applica-
tions.

Private Name Regions
Private name regions are used when you wish to link together a group

of files and expose only some to the symbol names that they define.
This lets you link a larger program in groups without worrying about
names intended only for local usage in one group colliding with identi-
cal names intended to be local to another group. Private name regions
let you keep names truly local, so the problem of name space pollution
is much more manageable.

An explicit use for private name regionsin an MC68HCO5 environment
isin building a paged program with duplication of the most used library
functions in each page, in order to avoid extra page commutation. To
avoid complaints when multiple copies of the same file redefine sym-
bols, each such contribution is placed in a private name region accessi-
ble only to other filesin the same page.

The basic sequence of commands for each island looks like:

+new <public Ffiles> +pri <private libraries>

Any symbols defined in <public files> are known outside this private
name region. Any symbols defined in <private libraries> are known
only within this region; hence they may safely be redefined as private to
other regions as well.

NOTE

All symbols defined in a private region are local symbols and will not
appear in the symbol table of the output file.

Renaming Symbols
At times it may be desirable to provide a symbol with an alias and to

hide the original name (i.e., to prevent its definition from being used by
the linker as a DEF which satisfies REFs to that symbol name). As an

260 Using The Linker © 2003 COSMIC Software

Special Topics

example, suppose that the function func in the C library provided with
the compiler does not do everything that is desired of it for some special
application. There are three methods of handling this situation (we will
ignore the alternative of trying to live with the existing function’s defi-
ciencies).

The first method is to write a new version of the function that performs
asrequired and link it into the program being built before linking in the
libraries. Thiswill cause the new definition of func to satisfy any refer-
ences to that function, so the linker does not include the version from
the library because it is not needed. This method has two major draw-
backs: first, a new function must be written and debugged to provide
something which basically aready exists, second, the details of exactly
what the function must do and how it must do it may not be available,
thus preventing a proper implementation of the function.

The second approach is to write a new function, say my_func, which
does the extra processing required and then calls the standard function
func. This approach will generally work, unless the original function
func is called by other functions in the libraries. In that case, the extra
function behavior cannot occur when func is called from library func-
tions, sinceit isactually my_func that performsit.

The third approach is to use the aliasing capabilities of the linker. Like
the second method, a new function will be written which performs the
new behavior and then callsthe old function. Thetwist isto give the old
function a new name and hide its old name. Then the new function is
given the old function’s name and, when it calls the old function, it uses
the new name, or alias, for that function. The following linker script
provides a specific example of this technique for the function func:

line 1 +seg .text -b 0x1000
line 2 +seg .data -b0

line 3 +new

line 4 Crts.xx

line 5 +def _oldfunc=_func
line 6 +pri func.o

line 7 +new

line 8 prog.o newfunc.o
line 9 <libraries>

© 2003 COSMIC Software Using The Linker 261

n Special Topics

NOTE

The function name func as referenced here is the name as seen by the C
programmer. The name which is used in the linker for purposes of alias-
ing is the name as seen at the object module level. For more information
on this transformation, see the section “ Interfacing C to Assembly Lan-
quage”’ in Chapter 3.

The main thing to note here is that func.o and new_func.o both define a
(different) function named func. The second function func defined in
newfunc.o calls the old func function by its alias oldfunc.

Name regions provide limited scope control for symbol names. The
+new command starts a new name region, which will be in effect until
the next +new command. Within a region there are public and private
name spaces. These are entered by the +pub and +pri commands; by
default, +new startsin the public name space.

Lines 1,2 are the basic linker commands for setting up a separate I/D
program. Note that there may be other options required here, either by
the system itself or by the user.

Line 3 starts anew region, initially in the public name space.
Line 4 specifies the startup code for the system being used.

Line5 establishes the symbol _oldfunc as an aias for the symbol _func.
The symbol _oldfunc is entered in the symbol table as a public defini-
tion. The symbol _func is entered as a private reference in the current
region.

Line 6 switches to the private name space in the current region. Then
func.o islinked and provides a definition (private, of course) which sat-
isfiesthe referenceto _func.

Line 7 starts a new name region, which is in the public name space by
default. Now no reference to the symbol _func can reach the definition
created on Line 6. That definition can only be reached now by using the
symbol _oldfunc, which is publicly defined asan aiasfor it.

262 Using The Linker © 2003 COSMIC Software

Special Topics

Line 8 links the user program and the module newfunc.o, which pro-
vides anew (and public) definition of _func. In this module the old ver-
sion is accessed by itsalias. This new version will satisfy all references
to_func madein prog.o and the libraries.

Line9linksin the required libraries.

The rules governing which name space a symbol belongs to are as fol-
lows:

e Any symbol definition in the public space is public and satisfies
all outstanding and future references to that symbol.

* Any symbol definition in the private space of the current regionis
private and will satisfy any private reference in the current region.

» All private definitions of a symbol must occur before a public def-
inition of that symbol. After a public definition of a symbol, any
other definition of that symbol will cause a* multiply defined sym-
bol” error.

e Any number of private definitions are allowed, but each must be
in a separate region to prevent a multiply defined symbol error.

* Any new reference is associated with the region in which the ref-
erence is made. It can be satisfied by a private definition in that
region, or by a public definition. A previous definition of that
symbol will satisfy the reference if that definition is public, or if
the definition is private and the reference is made in the same
region as the definition.

» If anew referenceto asymbol occurs, and that symbol still has an
outstanding unsatisfied reference made in another region, then
that symbol is marked as requiring a public definition to satisfy it.

e Any definition of a symbol must satisfy all outstanding references
to that symbol; therefore, a private definition of a symbol which
requires a public definition causes a blocked symbol reference
error.

© 2003 COSMIC Software Using TheLinker 263

n Special Topics

* No symbol reference can “reach” any definition made earlier than
the most recent definition.

Absolute Symbol Tables

Absolute Symbol tables are used to export symbols from one application
to another, to share common functions for instance, or to use functions
aready built in a ROM, from an application downloaded into RAM.
The linker option -s will modify the output file in order to contain only
asymbol table, without any code, but still with an object file format, by
using the same command file used to build the application itself. All
symbols are flagged as absolute symbols. This file can be used in
another link, and will then transmit its symbol table, allowing another
application to use those symbols as externals. Note that the linker does
not produce any map even if requested, when used with the -s option.

The basic sequence of commands looks like:

clnk -o appli.h05 -m appli.map appli.lkf
clnk -o appli.sym -s appli.lkf

The first link builds the application itself using the appli.lkf command
file. The second link uses the same command file and creates an object
file containing only an absolute symbol table. Thisfile can then be used
asan input object filein any other link command file.

264 Using The Linker © 2003 COSMIC Software

Description of The Map File

Description of The Map File

The linker can output a map file by using the -m option. The map file
contains 4 sections; the Segment section, the Modul es section, the Sack
Usage section and the Symbol's section.

Segment Describe the different segments which compose the appli-
cation, specifying for each of them: the start address (in
hexa), the end address (in hexa), the length (in decimal),
and the name of the segment. Note that the end value isthe
address of the byte following the last one of the segment,
meaning that an empty segment will have the same start
and end addresses. If a segment is initidized, it is dis-
played twice, the first time with its final address, the sec-
ond time with the address of the image copy.

Modules List al the modules which compose the application, giving
for each the description of all the defined sections with the
same format as in the Segment section. If an object has
been assembled with the -pl option, local symbols are dis-
played just after the module description.

Stack Usage Describe the amount of memory needed for the stack.
When using a stack model, each function of the applica-
tion islisted by its name, followed by a ‘>’ character indi-
cating that this function is not called by any other one (the
main function, interrupt functions, task entries...). The first
number is the total size of the stack used by the function
including al the internal calls. The second number
between braces shows the stack need for that function
alone. The entry may be flagged by the keyword “Recur -
sive’” meaning that this function is itself recursive or is
calling directly or indirectly a recursive function, and that
the total stack space displayed is not accurate. The linker
may detect potential but not actual recursive functions
when such functions are called by pointer. When using a
memory model each function using space in the ssimulated
stack is listed by its name followed by the address range of
its local area, and followed by two numbers between
braces. The first one indicates how many bytes are used for

© 2003 COSMIC Software Using TheLinker 265

n Return Value

locals and the second one indicates how many bytes are
used for arguments. Functions localy redirected to the
physical stack are also displayed with their stack usage.
The linker displays at the end of the list a total stack size
assuming interrupt functions cannot be themselves inter-
rupted. Interrupt frames and machine library cals are
properly counted.

Symbols List al the symbols defined in the application specifying

for each its name, its value, the section where it is defined,
and the modules where it is used. If the target processor
supports bank switching, addresses are displayed aslogical
addresses by default. Physical addresses can be displayed
by specifying the -p option on the linker command line.
Addresses of bit symbols are displayed with the byte
address followed by a colon character and the bit number.

Return Value

clnk returns success if no error messages are printed to STDOUT; that
is, if no undefined symbols remain and if all reads and writes succeed.
Otherwiseit returnsfailure.

Linker Command Line Examples

This section shows you how to use the linker to perform some basic
operations.

A linker command file consists of linker options, input and output file,
and libraries. The options and files are read from a command file by the
linker. For example, to create an MC68HCO5 file from file.o you can
type at the system prompt:

clnk -o myapp.-h05 myapp. lkf

where myapp.lkf contains:

+seg
+seg
+seg
+seg

.text -b0Ox1000 -n .text # start eprom address

.const -a .text # constants follow program
_bsct -b0Ox20 -n iram -m O0x100# initialized zero page
.share -a iram -is # shared segment

266 Using The Linker © 2003 COSMIC Software

Linker Command Line Examples

start data address
startup object file
input object files

C library

machine library

symbol used by startup

+seg .data -b0x100
\cx32\lib\crts.h05
filel.o file2.0

\cx32\lib\libi .h05
\cx32\lib\libm.h05
+def __ _memory=@.bss

HoH R W HH

The following link command file is an example for an application that
does not use floating point data types and does not require automatic
initialization.

demo.lkf: link command WITHOUT automatic init

+seg -text -b 0x1000 -n.text # program start address

+seg .const -a .text # constants follow program
+seg -bsct -b0x20 -n iram -m 0x100 # initialized zero page

+seg .share -a iram -is shared segment

+seg .data -b0x100 start data address
\cx32\lib\crts.h05 startup with NO-INIT
acia.o main program
modulel.o module program

\cx32\lib\libi.h05
\cx32\lib\libm.h05
+seg .const -bOx3ff4
vector.o

+def _ _memory=@.bss

C lib.

machine lib.

vectors eprom address
reset & interrupt vectors
symbol used by library

HoH R W H W HHH®

The following link command file is an example for an application that
uses single precision floating point data types and utilizes automatic
datainitialization.

demo.lkf: link command WITH automatic init

+seg -text -b 0x1000 -n.text # program start address

+seg .const -a .text # constants follow program
+seg .bsct -b0Ox20 -n iram -m O0x100 # initialized zero page

+seg .share -a iram -is shared segment

+seg .data -b0x100 start data address
\cx32\lib\crtsi.h05 startup with auto-init
acia.o main program

modulel.o module program

\cx32\lib\libf.h05
\cx32lib\libi.h05
\cx32\lib\libm.h05
+seg .const -bOx3ff4
vector.o

+def __memory=@.bss

single prec.

integer lib.

machine lib.

vectors eprom address
reset & interrupt vectors
end of bss segment

HHHEHFHHEHHHRR

© 2003 COSMIC Software Using TheLinker 267

CHAPTER

5

Debugging Support

This chapter describes the debugging support available with the cross
compiler targeting the MC68HCO05. There are two levels of debugging
support available, so you can use either the COSMIC's Zap C source
level cross debugger or your own debugger or in-circuit emulator to
debug your application. This chapter includes the following sections:

» Generating Debugging Information

» Generating Line Number Information
» Generating Data Object Information
* Thecprd Utility

* Theclst utility

© 2003 COSMIC Software Debugging Support 269

Generating Debugging Information

Generating Debugging Information

The compiler generates debugging information in response to command
line options you pass to the compiler as described below. The compiler
can generate the following debugging information:

1 line number information that allows COSMIC's C source level
debugger or another debugger or emulator to locate the address of the
code that a particular C source line (or set of lines) generates. You
may put line number information into the object module in either of
the two formats, or you can generate both line number information
and information about program data and function arguments, as
described below.

2 information about the name, type, storage class and address (abso-
lute or relative to a stack offset) of program static data objects, func-
tion arguments, and automatic data objects that functions declare.
Information about what source files produced which relocatable or
executable files. This information may be localized by address
(where the output file resides in memory). It may be written to afile,
sorted by address or alphabetical order, or it may be output to a
printer in paginated or unpaginated format.

Generating Line Number Information
The compiler puts line number information into a special debug symbol

table. The debug symbol table is part of the relocatable object file pro-
duced by a compilation. It is also part of the output of the clnk linker.
You can therefore obtain line number information about a singlefile, or
about all the files making up an executable program. However, the
compiler can produce line number information only for files that are
fewer than 65,535 lines in length.

Generating Data Object Information
The +debug option directs the compiler to generate information about

data objects and function arguments and return types. The debugging
information the compiler generates is the information used by the
COSMIC’s C source level cross debugger or another debugger or emu-
lator. The information produced about data objects includes their name,
scope, type and address. The address can be either absolute or relative
to a stack offset.

270 Debugging Support © 2003 COSMIC Software

Generating Debugging Information

As with line number information alone, you can generate debugging
information about a single file or about al the files making up an exe-
cutable program.

cprd may be used to extract the debugging information from files com-
piled with the +debug option, as described below.

© 2003 COMIC Software Debugging Support 271

The cprd Utility

The cprd Utility

cprd extracts information about functions and data objects from an
object module or executable image that has been compiled with the
+debug option. cprd extracts and prints information on the name, type,
storage class and address (absolute or offset) of program static data
objects, function arguments, and automatic data objects that functions
declare. For automatic data, the address provided is an offset from the
frame pointer. For function arguments, the address provided is an offset
from the stack pointer.

Command Line Options
cprd accepts the following command line options, each of which is
described in detail below:

cprd

[options] file

-fc* select function name
-Fl* select file name

-0* output file name

-r recurse structure fields
-s display object size

where <file> is an object file compiled from C source with the com-
piler command line option +debug set.

-fc*

-fI*

-0*

272 Debugging Support

print debugging information only about the function *. By
default, cprd prints debugging information on all functions
in <file>. Note that information about global data objects
is aways displayed when available.

print debugging information only about the file *. By
default, cprd prints debugging information on all C source
files.

print debugging information to file *. Debugging informa-
tion is written to your terminal screen by default.

Display structure fields with their offset.

Display object sizein bytes.

© 2003 COSMIC Software

The cprd Utility

By default, cprd prints debugging information about al functions and
global dataobjectsin <file>.

Examples
The following example show sample output generated by running the
cprd utility on an object file created by compiling the program acia.c
with the compiler option +debug set.

cprd acia.h05

Information extracted from acia.h05
source file acia.c:

(no globals)

unsigned char getch() lines 25 to 35 at 0xf016-0xf030
auto unsigned char ¢ at -1 from frame pointer

void outch() lines 39 to 44 at Oxf031-0xf03d
argument unsigned char c at 3 from frame pointer

void recept() lines 50 to 56 at Oxf03e-0xf113
(no locals)

void main() lines 62 to 71 at 0xf114-0xf06b
(no locals)

© 2003 COMIC Software Debugging Support 273

The clst utility

The clst utility

The clst utility takes relocatable or executable files as arguments, and
creates listings showing the C source files that were compiled or linked
to obtain those relocatable or executable files. It is a convenient utility
for finding where the source statements are implemented.

To use clst efficiently, its argument files must have been compiled with
the +debug option.

clst can be instructed to limit its display to files occupying memory in a
particular range of addresses, facilitating debugging by excluding extra-
neous data. clst will display the entire content of any files located
between the endpoints of its specified address range.

Command Line Options
clst accepts the following command line options, each of which is

described in detail below:

clst [options> fTile
-a list file alphabetically
-f*> process selected file
-i*> source file
-1# page length
-0* output file name
-p suppress pagination
-r* specify a line range #:#

274 Debugging Support

when set, cause clst to list files in alphabetical order. The
default isthat they are listed by increasing addresses.

specify * as the file to be processed. Default is to process
all the files of the application. Up to 10 files can be speci-
fied.

read string * to locate the source file in a specific directory.
Source files will first be searched for in the current direc-
tory, then in the specified directories in the order they were
given to clst. You can specify up to 20 different paths Each
path is a directory name, not terminated by any directory
separator character.

© 2003 COSMIC Software

The clst utility

-l# when paginating output, make the listings # lines long. By
default, listings are paginated at 66 lines per page.

-0* redirect output from clst to file *. You can achieve a simi-
lar effect by redirecting output in the command line.

‘ clst -0 acia.lst acia.h05 |

is equivalent to:

‘ clst acia.h05 >acia.lst |

-p suppress pagination. No page breaks will be output.

-r## where #:# is a range specification. It must be of the form
<number>:<number>. When this flag is specified, only
those source files occupying memory in the specified
range will belisted. If part of afile occupies memory inthe
specified range, that file will be listed in its entirety. The
followingisavalid use of -r:

-r 0xe000:0xe200

© 2003 COMIC Software Debugging Support 275

CHAPTER

8

Programming Support

This chapter describes each of the programming support utilities pack-
aged with the C cross compiler targeting the MC68HCO5. The follow-
ing utilities are available:

chex translate object module format
clabs generate absolute listings

clib build and maintains libraries
cobj examine objects modules
cv695 generate IEEE695 format
cvdwarf generate ELF/DWARF format

The assembler is described in Chapter 5, “Using The Assembler”. The
linker is described in Chapter 6, “Using The Linker”. Support for
debugging is described in Chapter 7, “ Debugging Support”.

The description of each utility tells you what tasks it can perform, the
command line options it accepts, and how you use it to perform some
commonly required operations. At the end of the chapter are a series of
examples that show you how to combine the programming support util-
ities to perform more complex operations.

© 2003 COSMIC Software Programming Support 277

E The chex Utility

The chex Utility

You use the chex utility to translate executable images produced by
clnk to one of several hexadecimal interchange formats. These formats
are: Motorola S-record format, and Intel standard hex format. You can
also use chex to override text and data biases in an executable image or

to output only a portion of the executable.

The executable image is read from the input file <file>.

Command Line Options

chex accepts the following command line options, each of which is

described in detail below:

chex [options] file

-a#t# absolute file start address
-b## address bias
-e## entry point address
-2 output format
-h suppress header
+h* specify header string
-m# maximum data bytes per line
-n*> output only named segments
-0* output file name
-p use paged address format
-pl# page number for linear mapping
-pn use paged address in bank only
-pp use paged address with mapping
-s output increasing addresses
-x*> exclude named segments

-attt the argument file is a considered as a pure binary file and

is the output address of the first byte.
-b## substract ## to any address before output.
ettt define ## as the entry point address encoded in the dedi-

cated record of the output format, if available.

-f? define output file format. Valid options are:

278 Programming Support

© 2003 COSMIC Software

The chex Utility

i Intel hex format

Motorola S19 format

m
2 Motorola S2 format
3

Motorola S3 format

Default is to produced Motorola S-Records (-fm). Any
other letter will select the default format.

-h do not output the header sequence if such a sequence exists
for the selected format.

+h* insert * in the header sequence if such a sequence existsfor
the selected format.

-m# output # maximum data bytes per line. Default is to output

32 bytes per line.

-n*> output only segments whose name is equal to the string *.
Up to twenty different names may be specified on the com-
mand line. If there are several segments with the same
name, they will all be produced. This option is used in
combination with the -n option of the linker.

-0* write output module to file *. The default is STDOUT.

-p output addresses of banked segments using a paged format
<page_number><logical address>, instead of the
default format <physical>.

-pl# specify the page value of the segment localized between

0x8000 and 0xc000 when using a linear non-banked
application. This option enforces a paged format for this
segment.

-pn behaves as -p but only when logical address is inside the
banked area. This option has to be selected when produc-
ing an hex file for the Noral debugger.

© 2003 COSMIC Software Programming Support 279

E The chex Utility

-Pp behaves as -p but uses paged addresses for all banked seg-
ments, mapped or unmapped. This option hasto be selectd
when producing an hex file for Promic tools.

-S sort the output addresses in increasing order.

-X* > do not output segments whose name is equal to the string
*, Up to twenty different names may be specified on the
command line. If there are several segments with the same
name, they will not al be output.

Return Satus
chex returns success if no error messages are printed; that is, if all
records are valid and all reads and writes succeed. Otherwise it returns
failure.

Examples
The file hello.c, consisting of:

‘ char *p = {*hello world”}; ‘

when compiled produces the following the following Motorola
Srecord format:

‘ chex hello.o ‘

SO0A000068656C6C6F2EG6F44
$1110000020068656C6C6F20776F726C640090
S9030000FC

and the following Intel standard hex format:

chex -fi hello.o

-0EO00000020068656C6C6F20776F726C640094
-00000001FF

280 Programming Support © 2003 COSMIC Software

The clabs Utility

The clabs Utility

clabs processes assembler listing files with the associated executable
file to produce listing with updated code and address values.

clabs decodes an executable file to retrieve the list of all the fileswhich
have been used to create the executable. For each of these files, clabs
looks for amatching listing file produced by the compiler (“.Is” file). If
such afile exists, clabs creates a new listing file (“.1a” file) with abso-
lute addresses and code, extracted from the executable file.

To be able to produce any results, the compiler must have been used
with the ‘-I" option.

Command Line Options
clabs accepts the following command line options, each of which is

described in detail below.

clabs [options] File

-a process also library files
-cl* listings files
-1 restrict to local directory
-p use paged address format
-pn use paged address in bank only
-pp use paged address with mapping
-r* relocatable listing suffix
-s* absolute listing suffix
-V echo processed file names

-a process also files located in libraries. Default is to process

only al the files of the application.

-cl* specify a path for the listing files. By default, listings are
created in the same directoy than the source files.

-l process files in the current directory only. Default is to
process al the files of the application.

-p output addresses of banked segments using a paged format
<page_number><logical_address>, instead of the
default format <physical>.

© 2003 COSMIC Software Programming Support 281

H The clabs Utility

-pn behaves as -p but only when logical address is inside the
banked area.
-pPp behaves as -p but uses paged addresses for all banked seg-

ments, mapped or unmapped.

-r* specify the input suffix, including or not the dot *.’ charac-
ter. Default is”.Is”

-s* specify the output suffix, including or not the dot ‘.’ char-
acter. Defaultis”.la”

-V be verbose. The name of each module of the application is
output to STDOUT.

<file> specifies one file, which must be in executable format.

Return Satus
clabs returns success if no error messages are printed; that is, if all reads
and writes succeed. An error message is output if no relocatable listing
files are found. Otherwise it returnsfailure.

Examples
The following command line:

clabs -v acia.h05

will output:
crts.lIs

acia.ls
vector.ls

and creates the following files:

crts.la
acia.la
vector.la

The following command line:

282 Programming Support © 2003 COSMIC Software

The clabs Utility

clabs -r.Ist acia.h05

will look for files with the suffix “.Ist”:

The following command line:

clabs -s.Ix acia.h05

will generate:
crts.Ix

acia. Ix
vector. Ix

© 2003 COSMIC Software Programming Support 283

E The clib Utility

The clib Utility

clib builds and maintains object module libraries. clib can also be used
to collect arbitrary filesin one place. <library> isthe name of an exist-
ing library file or, in the case of replace or create operations, the name
of the library to be constructed.

Command Line Options
clib accepts the following command line options, each of which is
described in detail below:

clib

[options] <library> <files>

-a accept absolute symbols

-C create a new library

-d delete modules from library
-i* object list filename

-1 load all library at link

-r replace modules in library
-s list symbols in library

-t list files in library

-V be verbose

-X extract modules from library

I*

include absolute symbolsin the library symbol table.

create alibrary containing <files>. Any existing <library>
of the same name is removed before the new one is cre-
ated.

delete from the library the zero or more filesin <files>.

take object filesfrom alist *. You can put several files per
line or put one file per line. Each lines can include com-
ments. They must be prefixed by the ‘# character. If the
command line contains <files>, then <files> will be also
added to the library.

when alibrary is built with this flag set, al the modules of
the library will be loaded at link time. By default, the
linker only loads modul es necessary for the application.

284 Programming Support © 2003 COSMIC Software

Theclib Utility

-r in an existing library, replace the zero or more files in
<files>. If no library <library> exists, create a library
containing <files>. The files in <files> not present in the
library are added to it.

-S list the symbols defined in the library with the module
name to which they belong.

-t list thefilesin the library.

-V be verbose

-X extract the files in <files> that are present in the library

into discrete files with the same names. If no <files> are
specified, al filesin the library are extracted.

At most one of the options -[c r t X] may be specified at the same time.
If none of these is specified, the -t option is assumed.

Return Satus
clib returns success if no problems are encountered. Otherwise it
returns failure. After most failures, an error message is printed to
STDERR and the library file is not modified. Output from the -t, -s
options, and verbose remarks, are written to STDOUT.

Examples
To build alibrary and check its contents:

clib -c libc one.o two.o three.o
clib -t libc

will output:
one.o
two.o

three.o

To build alibrary from alist file:

clib -ci list libc six.o seven.o

© 2003 COSMIC Software Programming Support 285

E The clib Utility

where list contains;

files for the libc library
one.o

two.o

three.o

four.o

five.o

286 Programming Support © 2003 COSMIC Software

The cobj Utility

The cobj Utility

You use cobj to inspect rel ocatable object files or executable. Such files
may have been output by the assembler or by the linker. cobj can be
used to check the size and configuration of relocatable object files or to
output information from their symbol tables.

Command Line Options
cobj accepts the following options, each of which is described in detail

bel ow.
cobj [options] file

- output data flows
-h output header
-n output sections
-0* output file name
-r output relocation flows
-s output symbol table
-V display file addresses
-X output debug symbols

<file> gpecifies a file, which must be in relocatable format or executa-

ble format.

-d output in hexadecimal the data part of each section.

-h display al the fields of the object file header.

-Nn display the name, size and attribute of each section.

-0* write output module to file *. The default is STDOUT.

-r output in symbolic form the relocation part of each section.
-S display the symboal table.

-V display seek addresses inside the object file.

-X display the debug symbol table.

If none of these optionsis specified, the default is-hns.

© 2003 COSMIC Software Programming Support 287

H The cobj Utility

Return Satus

cobj returns success if no diagnostics are produced (i.e. if al reads are
successful and all file formats are valid).

Examples

For example, to get the symbol table:

cobj -s acia.o

symbols:

_main: 0000003e
_outch: 0000001b
_buffer: 00000000
_ptecr: 00000000
_getch: 00000000
_ptlec: 00000002
_recept: 00000028

section
section
section
section
section
section
section

.text defined public
-text defined public
-bss defined public
-bsct defined public zpage
-text defined public
_bsct defined public zpage
.text defined public

The information for each symbol is: name, address, section to which it

belongs and attribute.

288 Programming Support

© 2003 COSMIC Software

The cv695 Utility

The cv695 Utility

cv695 isthe utility used to convert a file produced by the linker into an
|EEEG95 format file.

Command Line Options
cv695 accepts the following options, each of which is described in
detail below.

cv695 [options] File

+V4 do not offset locals
+bit patch bit variables into chars
-d display usage info

+dpage file uses data paging (HC12 only)
-mod? select compiler model

+old produce old format

-0* output file name

+page# define pagination (HC12 only)

-rb reverse bitfield (L to R)

-V be verbose

<file> specifies afile, which must be in executable format.

-V4 output information as per as cv695 converter V4.x version.
This flag is provided for compatibility with older version
of cv695 version. DO NOT USE UNLESS SPECIFI-
CALLY INSTRUCTION TO DO SO.

+bit patch bit variables into chars because |EEE695 format
does not handle bit variables.

-dpage output banked data addresses. DO NOT USE THIS
OPTION ON NON BANKED DATA APPLICATION.
THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE MC68HC12.

-d dump to the screen the interface information such as:
frame coding, register coding, e.g. al the processor spe-
cific coding for IEEE (note: some of these codings have
been chosen by COSMIC because no specifications exist
for them in the current published standard).

© 2003 COSMIC Software Programming Support 289

E The cv695 Utility

THIS INFORMATION IS ONLY RELEVANT FOR
WRITING A READER OF THE PRODUCED I|EEE
FORMAT.

-mod? where ? is a character used to specify the compilation
model selected for the file to be converted.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC16.

This flag mimics the flag used with C. Acceptable values
are:

¢ | for compact model

s for short model

t for tiny model

| for large model

+old output old format for MRI.

-0* where * is a filename. * is used to specify the output file
for cv695. By default, if -0 is not specified, cv695 send its
output to the file whose name is obtained from the input
file by replacing the filename extension with “.695”.

+page# output addresses in paged mode where # specifies the page
type:

0 | for no paging.
1 | for pages with PHYSICAL ADDRESSES

2 |for pages with banked addresses
<page><offset_in_page>

By default linear physical addresses are output.

THIS FLAG IS CURRENTLY ONLY MEANINGFULL
FOR THE MC68HC12.

290 Programming Support © 2003 COSMIC Software

The cv695 Utility

-rb reverse bitfield from left to right.
-V select verbose mode. cv695 will display information about
its activity.

Return Satus
cv695 returns success if no problems are encountered. Otherwise it

returns failure.

Examples
Under MS/DOS, the command could be:

cv695 C:\test\basic.h05

and will produce: C:\test\basic.695

and the following command:

cv695 -0 File C:\test\basic.h05

will produce: file

Under UNIX, the command could be:

cv695 /test/basic.h05

and will produce: test/basic.695

© 2003 COSMIC Software Programming Support 291

n The cvdwarf Utility

The cvdwarf Utility

cvdwarf is the utility used to convert a file produced by the linker into
an |ELF/DWARF format file.

Command Line Options
cvdwarf accepts the following options, each of which is described in
detail below.

cvdwarf [options] file

-loc complex location description
-0* output file name

+page# define pagination (HC12 only)
-rb reverse bitfield (L to R)

-V be verbose

<file> specifies afile, which must be in executable format.

+page#

-loc

output addresses in paged mode where # specifies the page
type:

1 | for banked code

2 | for banked data
3 | both (code and data)

By default the banked mode is disable.

THIS FLAG IS CURRENTLY ONLY MEANING-
FULL FOR THE MC68HC12.

where * is a filename. * is used to specify the output file
for cvdwarf. By default, if -0 is not specified, cvdwarf send
its output to the file whose name is obtained from the input
file by replacing the filename extension with “.elf”.

location lists are used in place of location expressions
whenever the object whose location is being described can
change location during its lifetime. THIS POSSIBILITY
ISNOT SUPPORTED BY ALL DEBUGGERS.

292 Programming Support © 2003 COSMIC Software

The cvdwarf Utility

-rb reverse bitfield from left to right.

-V select verbose mode. cvdwarf will display information
about its activity.

Return Satus
cvdwarf returns success if no problems are encountered. Otherwise it

returns failure.

Examples
Under MS/DOS, the command could be:

cvdwarfC:\test\basic.h05

and will produce: C:\test\basic.elf

and the following command:

cvdwarf -o file C:\test\basic.h05

will produce: file

Under UNIX, the command could be:

cvdwarf /test/basic.h05

and will produce: test/basic.elf

© 2003 COSMIC Software Programming Support 293

APPENDI X

A

Compiler Error
M essages

This appendix lists the error messages that the compiler may generatein
response to errors in your program, or in response to problems in your
host system environment, such as inadequate space for temporary inter-
mediate files that the compiler creates.

The first pass of the compiler generally produces all user diagnostics.
This pass deals with # control lines and lexical analysis, and then with
everything else having to do with semantics. Only machine-dependent
extensions are diagnosed in the code generator pass. If a pass produces
diagnostics, later passes will not be run.

Any compiler message containing an exclamation mark ! or the word
‘PANIC’ indicates that the compiler has detected an inconsistent inter-
nal state. Such occurrences are uncommon and should be reported to
the maintainers.

e Parser (cp6805) Error Messages

» Code Generator (cg6805) Error Messages
* Assembler (ca6805) Error Messages

e Linker (clnk) Error Messages

© 2003 COSMIC Software Compiler Error Messages 295

Parser (cp6805) Error Messages

Parser (cp6805) Error Messages

<name> not a member - field name not recognized for this struct/
union

<name> not an argument - a declaration has been specified for an
argument not specified as a function parameter

<name> undefined - afunction or avariableis never defined
FlexL M <message>- an error is detected by the license manager

_asm string too long - the string constant passed to _asmis larger than
255 characters

ambiguous space modifier - a space modifier attempts to redefine an
already specified modifier

array size unknown - the sizeof operator has been applied to an array
of unknown size

bad # argument in macro <name> - the argument of a# operator in a
#define macro is not a parameter

bad # directive: <name> - an unknown #directive has been specified
bad # syntax - # is not followed by an identifier

bad ## argument in macro <name> - an argument of a## operator in
a#define macro is missing

bad #asm directive - a#tasm directive is not entered at avalid declara-
tion or instruction boundary

bad #define syntax - a#define is not followed by an identifier
bad #€lif expression - a#€lif is not followed by a constant expression
bad #else - a#else occurs without a previous #if, #ifdef, #ifndef or #elif

bad #endasm directive - a#endasm directive is not closing a previous
#asm directive

296 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

bad #endif - a#endif occurs without a previous #if, #ifdef, #ifndef, #elif
or #else

bad #if expression - the expression part of a #if is not a constant
expression

bad #ifdef syntax - extra characters are found after the symbol name
bad #ifndef syntax - extra characters are found after the symbol name
bad #include syntax - extra characters are found after the file name

bad #pragma section directive - syntax for the #pragma section direc-
tive isincorrect

bad #pragma space directive - syntax for the #pragma space directive
isincorrect

bad #undef syntax - #undef is not followed by an identifier

bad _asm() argument type - thefirst argument passed to _asmis miss-
ing or is not a character string

bad alias expression - aias definition is not avalid expression

bad alias value - alias definition is not a constant expression

bad bit number - abit number is not a constant between 0 and 7

bad character <character> - <character> isnot part of alegal token

bad defined syntax - the defined operator must be followed by an iden-
tifier, or by an identifier enclosed in parenthesis

bad function declaration - function declaration has not been termi-
nated by aright parenthesis

bad integer constant - an invalid integer constant has been specified

bad invocation of macro <name> - a #define macro defined without
arguments has been invoked with arguments

© 2003 COSMIC Software Compiler Error Messages 297

Parser (cp6805) Error Messages

bad macro argument - a parameter in a#define macro is not an identi-
fier

bad macro argument syntax - parameters in a #define macro are not
separated by commas

bad proto argument type - function prototype argument is declared
without an explicit type

bad real constant - an invalid real constant has been specified

bad return type for inline function - inline function must be declared
with void return type

bad space modifier - a modifier beginning with a @ character is not
followed by an identifier

bad structure for return - the structure for return is not compatible
with that of the function

bad struct/union operand - a structure or an union has been used as
operand for an arithmetic operator

bad symbol defintion - the syntax of a symbol defined by the -d option
on the command lineis not valid

bad void argument - the type void has not been used alone in a proto-
typed function declaration

can't create <name> - file <name> cannot be created for writing
can't open <name> - file <name> cannot be opened for reading

can't redefine macro <name> - macro <name> has been already
defined

can't undef macro <name> - a#undef has been attempted on a prede-
fined macro

compare out of range - acomparison is detected as beeing always true
or dways false (+strict)

298 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

const assignment - a const object is specified as left operand of an
assignment operator

constant assignement in a test - an assignment operator has been used
in the test expression of an if, while, do, for statements or a conditional
expression (+strict)

duplicate case - two case labels have been defined with the same value
in the same switch statement

duplicate default - adefault label has been specified more than oncein
aswitch statement

embedded usage of tag name <name> - a structure/union definition
contains areference to itself.

enum size unknow - the range of an enumeration is not available to
choose the smallest integer type

exponent overflow in real - the exponent specified in area constant is
too large for the target encoding

float valuetoo largefor integer cast - afloat constant istoo large to be
casted in an integer

hexadecimal constant too large - an hexadecimal constant istoo large
to be represented on an integer

illegal storage class - storage classis not legal in this context
illegal type specification - type specification is not recognizable

illegal void operation - an object of type void is used as operand of an
arithmetic operator

illegal void usage - an object of type void is used as operand of an
assignment operator

implicit int type in argument declaration - an argument has been
declared without any type (+strict)

© 2003 COSMIC Software Compiler Error Messages 299

Parser (cp6805) Error Messages

implicit int type in global declaration - a global variable has been
declared without any type (+strict)

implicit int type in local declaration - a local variable has been
declared without any type (+strict)

implicit int type in struct/union declaration - a structure or union
field has been declared without any type (+strict)

incompatible argument type - the actual argument type does not
match the corresponding type in the prototype

incompatible compare type - operands of comparison operators must
be of scalar type

incompatible operand types - the operands of an arithmetic operator
are not compatible

incompatible pointer assignment - assigned pointers must have the
same type, or one of them must be a pointer to void

incompatible pointer operand - a scalar type is expected when opera-
tors += and -= are used on pointers

incompatible pointer operation - pointers are not allowed for that
kind of operation

incompatible pointer types - the pointers of the assignment operator
must be of equal or coercible type

incompatible return type - the return expression is not compatible
with the declared function return type

incompatible struct/union operation - a structure or an union has
been used as operand of an arithmetic operator

incompatible types in struct/union assignment - structures must be
compatible for assignment

incomplete #elif expression - a #dif is followed by an incomplete
expression

300 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

incomplete #if expression - a #if isfollowed by an incomplete expres-
sion

incomplete type - structure typeis not followed by atag or definition

integer constant too large - adecimal constant istoo large to be repre-
sented on an integer

invalid case - a case label has been specified outside of a switch state-
ment

invalid default - a default 1abel has been specified outside of a switch
Statement

invalid ? test expression - the first expression of a ternary operator
(?:) isnot atestable expression

invalid address operand - the “address of” operator has been applied
to aregister variable or an rvalue expression

invalid address type - the “address of” operator has been applied to a
bitfield

invalid alias - an alias has been applied to an extern object

invalid arithmetic operand - the operands of an arithmetic operator
are not of the same or coercible types

invalid array dimension - an array has been declared with adimension
which is not a constant expression

invalid binary number - the syntax for abinary constant is not valid

invalid bit assignment - the expression assigned to a bit variable must
be scalar

invalid bit initializer - the expression initiliazing a bit variable must be
scalar

invalid bitfield size - abitfield has been declared with asize larger than
itstypesize

© 2003 COSMIC Software Compiler Error Messages 301

Parser (cp6805) Error Messages

invalid bitfield type - a type other than int, unsigned int, char,
unsigned char has been used in a bitfield.

invalid break - a break may be used only in while, for, do, or switch
statements

invalid case operand - a case label has to be followed by a constant
expression

invalid cast operand - the operand of a cast operator in not an expres-
sion

invalid cast type - a cast has been applied to an object that cannot be
coerced to a specific type

invalid conditional operand - the operands of a conditional operator
are not compatible

invalid constant expression - a constant expression is missing or is not
reduced to a constant value

invalid continue - a continue statement may be used only in while, for,
or do statements

invalid do test type - the expression of ado ... while() instruction is not
atestable expression

invalid expression - an incomplete or ill-formed expression has been
detected

invalid external initialization - an external object has been initialized

invalid floating point operation - an invalid operator has been applied
to floating point operands

invalid for test type - the second expression of a for(;;) instruction is
not a testable expression

invalid function member - afunction has been declared within a struc-
ture or an union

302 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

invalid function type - the function call operator () has been applied to
an object which is not a function or a pointer to afunction

invalid if test type - the expression of an if () instruction is not a testa-
ble expression

invalid indirection operand - the operand of unary * is not a pointer

invalid line number - the first parameter of a #line directive is not an
integer

invalid local initialization - theinitialization of alocal object isincom-
plete or ill-formed

invalid lvalue - the left operand of an assignment operator is not a vari-
able or a pointer reference

invalid narrow pointer cast - a cast operator is attempting to reduce
the size of a pointer

invalid operand type - the operand of a unary operator has an incom-
patible type

invalid pointer cast operand - a cast to a function pointer has been
applied to a pointer that is not a function pointer

invalid pointer initializer - initializer must be a pointer expression or
the constant expression 0

invalid pointer operand - an expression which is not of integer type
has been added to a pointer

invalid pointer operation - an illegal operator has been applied to a
pointer operand

invalid pointer types - two incompatible pointers have been sub-
stracted

invalid shift count type - the right expression of a shift operator is not
an integer

© 2003 COSMIC Software Compiler Error Messages 303

Parser (cp6805) Error Messages

invalid sizeof operand type - the sizeof operator has been applied to a
function

invalid storage class - storage classis not legal in this context

invalid struct/union operation - a structure or an union has been used
as operand of an arithmetic operator

invalid switch test type - the expression of aswitch () instruction must
be of integer type

invalid typedef usage - atypedef identifier isused in an expression

invalid void pointer - a void pointer has been used as operand of an
addition or a substraction

invalid whiletest type - the expression of awhile () instruction isnot a
testable expression

missing ## argument in macro <name> - an argument of a## opera-
tor in a#define macro ismissing

missing ‘>’ in #include - a file name of a #include directive begins
with ‘<’ and does not end with ‘>’

missing) in defined expansion - a‘(* does not haveabalancing ‘)’ ina
defined operator

missing ; in argument declar ation - the declaration of afunction argu-
ment does not end with *;’

missing ; in local declaration - the declaration of alocal variable does
not end with ‘;’

missing ; in member declaration - the declaration of a structure or
union member does not end with *;’

missing ? test expression - the test expression is missing in a ternary
operator (?:)

missing _asm() argument - the _asm function needs at least one argu-
ment

304 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

missing argument - the number of argumentsin the actual function call
isless than that of its prototype declaration

missing argument for macro <name> - amacro invocation has fewer
arguments than its corresponding declaration

missing argument name - the name of an argument ismissing in apro-
totyped function declaration

missing array subscript - an array element has been referenced with
an empty subscript

missing do test expression - ado ... while () instruction has been speci-
fied with an empty while expression

missing enumer ation member - amember of an enumeration is not an
identifier

missing explicit return - areturn statement is not ending a non-void
function (+strict)

missing exponent in real - afloating point constant has an empty expo-
nent after the’e or 'E’ character

missing expression - an expression is needed, but none is present

missing file name in #include - a#include directive is used, but nofile
name s present

missing goto label - an identifier is needed after a goto instruction

missing if test expression - an if () instruction has been used with an
empty test expression

missing initialization expression - a local variable has been declared
with an ending ‘=" character not followed by an expression

missing initializer - a simple object has been declared with an ending
‘=" character not followed by an expression

missing local name - alocal variable has been declared without a name

© 2003 COSMIC Software Compiler Error Messages 305

Parser (cp6805) Error Messages

missing member declaration - a structure or union has been declared
without any member

missing member name - a structure or union member has been
declared without a name

missing name in declaration - a variable has been declared without a
name

missing prototype - a function has been used without a fully proto-
typed declaration (+strict)

missing prototype for inline function - an inline function has been
declared without a fully prototyped syntax

missing return expression - asimple return statement is used in anon-
void function (+strict)

missing switch test expression - an expression in a switch instruction
is needed, but is not present

missing while - a‘while’ is expected and not found

missing while test expression - an expression in awhile instruction is
needed, but none is present

missing : - a‘:’ isexpected and not found
missing ; - a‘;’ isexpected and not found
missing (- a‘(’ isexpected and not found
missing) - a‘)’ is expected and not found
missing] - a‘']’ is expected and not found
missing { - a‘{’ is expected and not found

missing } - a‘'}’ isexpected and not found

306 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

missing } in enum definition - an enumeration list does not end with a
‘}' character

missing } in struct/union definition - a structure or union member list
doesnot end witha '}’ character

redeclared argument <name> - a function argument has conflicting
declarations

redeclared enum member <name> - an enum element is aready
declared in the same scope

redeclared external <name> - an external object or function has con-
flicting declarations

redeclared local <name> - a local is aready declared in the same
scope

redeclared proto argument <name> - an identifier is used more than
once in a prototype function declaration

redeclared typedef <name> - atypedef is already declared in the same
scope

redefined alias <name> - an alias has been applied to an aready
declared object

redefined label <name> - alabel is defined more than once in a func-
tion

redefined member <name> - an identifier is used more than once in
structure member declaration

redefined tag <name> - atag is specified more than once in a given
scope

repeated type specification - the same type modifier occurs more than
once in atype specification

scalar typerequired - type must be integer, floating, or pointer

© 2003 COSMIC Software Compiler Error Messages 307

Parser (cp6805) Error Messages

size unknown - an attempt to compute the size of an unknown object
has occurred

space attribute conflict - a space modifier attempts to redefine an
aready specified modifier

string too long - a string is used to initialize an array of characters
shorter than the string length

struct/union size unknown - an attempt to compute a structure or
union size has occurred on an undefined structure or union

syntax error - an unexpected identifier has been read
token overflow - an expression istoo complex to be parsed

too many argument - the number of actual arguments in a function
declaration does not match that of the previous prototype declaration

too many arguments for macro <name> - a macro invocation has
more arguments than its corresponding macro declaration

too many initializers - initiaization is completed for a given object
beforeinitializer list is exhausted

too many spaces modifiers - too many different namesfor ‘@' modifi-
ersare used

truncating assignment - the right operand of an assignment is larger
than the left operand (+strict)

unbalanced ’ - acharacter constant does not end with a simple quote
unbalanced “ - a string constant does not end with a double quote
<name> undefined - an undeclared identifier appearsin an expression
undefined label <name> - alabel is never defined

undefined struct/union - a structure or union is used and is never
defined

308 Compiler Error Messages © 2003 COSMIC Software

Parser (cp6805) Error Messages

unexpected end of file - last declaration isincomplete

unexpected return expression - a return with an expression has been
used within a void function

unknown enum definition - an enumeration has been declared with no
member

unknown structure - an attempt to initialize an undefined structure has
been done

unknown union - an attempt to initialize an undefined union has been
done

value out of range - a constant is assigned to a variable too small to
represent its value (+strict)

zero divide - adivide by zero was detected

zero modulus - amodulus by zero was detected

© 2003 COSMIC Software Compiler Error Messages 309

Code Generator (cg6805) Error Messages

Code Generator (cg6805) Error Messages

bad builtin - the @builtin type modifier can be used only on functions

bad @interrupt usage - the @interrupt type modifier can only be used
on functions.

cannot call @interrupt function - an @interrupt function has been
called directly. Its name can only be used in the interrupt vector table.

invalid indirect call - afunction has been called through a pointer with
more than one char or int argument, or is returning a structure.

redefined space - the version of ¢cp6805 you used to compile your pro-
gram is incompatible with cg6805.

unknown space - you have specified an invalid space modifier @xxx

unknown space modifier - you have specified an invalid space modi-
fier @xxx

PANIC ! bad input file - cannot read input file
PANIC ! bad output file - cannot create output file
PANIC ! can't write - cannot write output file

All other PANIC ! messages should never happen. If you get such a
message, please report it with the corresponding source program to
COSMIC.

310 Compiler Error Messages © 2003 COSMIC Software

Assembler (ca6805) Error Messages

Assembler (ca6805) Error Messages

The following error messages may be generated by the assembler. Note
that the assembler's input is machine-generated code from the compiler.
Hence, it is usually impossible to fix things ‘on the fly’. The problem
must be corrected in the source, and the offending program(s) recom-
piled.

bad .source directive - a .source directive is not followed by a string
giving afile name and line numbers

bad addressing mode - an invalid addressing mode have been con-
structed

bad argument number- a parameter sequence \n uses a value negative
or greater than 9

bad character constant - a character constant istoo long for an expres-
sion

bad comment delimiter- an unexpected field is not a comment
bad constant - a constant usesillegal characters

bad else - an else directive has been found without a previous if direc-
tive

bad endif - an endif directive has been found without a previous if or
else directive

bad file name - the include directive operand is not a character string

bad index register - an invalid register has been used in an indexed
addressing mode

bad register - an invalid register has been specified as operand of an
instruction

bad relocatable expression - an external label has been used in either a
constant expression, or with illegal operators

© 2003 COSMIC Software Compiler Error Messages 311

Assembler (ca6805) Error Messages

bad string constant - a character constant does not end with asingle or
double quote

bad symbol name: <name> - an expected symbol is not an identifier
can't create <name> - the file <name> cannot be opened for writing
can't open <name> - the file <name> cannot be opened for reading
can't open sour ce <name> - the file <name> cannot be included

cannot include from a macro - the directive include cannot be speci-
fied within a macro definition

cannot move back current pc - an org directive has a negative offset
illegal size - the size of ads directiveis negative or zero

missing label - alabel must be specified for this directive

missing oper and - operand is expected for thisinstruction

missing register - aregister is expected for thisinstruction

missing string - a character string is expected for this directive
relocatable expression not allowed - a constant is needed

section name <name> too long - a section name has more than 15
characters

string constant too long - a string constant is longer than 255 charac-
ters

symbol <name> already defined - attempt to redefine an existing
symbol

symbol <name> not defined - a symbol has been used but not declared
syntax error - an unexpected identifier or operator has been found

too many arguments - a macro has been invoked with more than 9
arguments

312 Compiler Error Messages © 2003 COSMIC Software

Assembler (ca6805) Error Messages

too many back tokens - an expression istoo complex to be evaluated
unclosed if - an if directive is not ended by an else or endif directive

unknown instruction <name> - an instruction not recognized by the
processor has been specified

value too large - an operand is too large for the instruction type

zero divide - adivide by zero has been detected

© 2003 COSMIC Software Compiler Error Messages 313

Linker (clnk) Error Messages

Linker (cInk) Error Messages

-a not allowed with -b or -o - the after option cannot be specified if
any start addressis specified.

+def symbol <symbol> multiply defined - the symbol defined by a
+def directive is already defined.

bad file format - an input file has not an object file format.

bad number in +def - the number provided in a+def directive does not
follow the standard C syntax.

bad number in +spc <segment> - the number provided in a +spc
directive does not follow the standard C syntax.

bad processor type - an object file has not the same configuration
information than the others.

bad reloc code - an object file contains unexpected rel ocation informa-
tion.

bad section hamein +def - the name specified after the ‘@’ in a +def
directive is not the name of a segment.

can't create map file <file> - map file cannot be created.
can't create <file> - output file cannot be created.

can't locate .text segment for initialization - initialized data segments
have been found but no host segment has been specified.

can't locate shared segment - shared datas have been found but no
host segment has been specified.

can't open file <file> - input file cannot be found.

file already linked - an input file has aready been processed by the
linker.

function <function> is recursive - a nostack function has been
detected as recursive and cannot be allocated.

314 Compiler Error Messages © 2003 COSMIC Software

Linker (clnk) Error Messages

function <function> is reentrant - a function has been detected as
reentrant. The function is both called in an interrupt function and in the
main code.

incomplete +def directive - the +def directive syntax is not correct.
incomplete +seg directive - the +seg directive syntax is not correct.
incomplete +spc directive - the +spc directive syntax is not correct.

init segment cannot be initialized - the host segment for initialization
cannot be itself initialized.

invalid @ argument - the syntax of an optional input fileis not correct.

invalid -i option - the -i directiveis followed by an unexpected charac-
ter.

missing command file - a link command file must be specified on the
command line.

missing output file - the -o option must be specified.
missing '=" in +def - the +def directive syntax is not correct.

missing '=' in +spc <segment> - the +spc directive syntax is not cor-
rect.

named segment <segment> not defined - a segment name does not
match aready existing segments.

no default placement for segment <segment> - a segment is missing
-aor -b option.

prefixed symbol <name> in conflict - asymbol beginning by ‘f_" (for
abanked function) also exists without the ‘f* prefix.

read error - an input object fileis corrupted

segment <segment> and <segment> overlap - a segment is overlap-
ping an other segment.

© 2003 COSMIC Software Compiler Error Messages 315

Linker (clnk) Error Messages

segment <segment> size over flow - the size of a segment islarger than
the maximum value alowed by the -m option.

shared segment not empty - the host segment for shared data is not
empty and cannot be used for allocation.

symbol <symbol> multiply defined - an object file attempts to rede-
fine asymboal.

symbol <symbol> not defined - a symbol has been referenced but
never defined.

unknown directive - a directive name has not been recognized as a
linker directive.

316 Compiler Error Messages © 2003 COSMIC Software

APPENDI X

B

Modifying Compiler
Operation

This chapter tells you how to modify compiler operation by making
changesto the standard configuration file. It also explains how to create
your own programmable options” which you can use to modify com-
piler operation from the cx6805.cxf.

© 2003 COSMIC Software Modifying Compiler Operation 317

E The Configuration File

The Configuration File

The configuration file is designed to define the default options and
behaviour of the compiler passes. It will also alow the definition of
programmable options thus simplifying the compiler configuration. A
configuration file contains a list of options similar to the ones accepted
for the compiler driver utility cx6805.

These options are described in Chapter 4, “Using The Compiler”.
There are two differences. the option -f cannot be specified in a config-
uration file, and the extra -m option has been added to allow the defini-
tion of a programmable compiler option, as described in the next

paragraph.

The contents of the configuration file cx6805.cxf as provided by the
default installation appears below:

CONFIGURATION FILE FOR 68HCO5 COMPILER
Copyright (c) 1996 by COSMIC Software

#

-pu # unsigned char

-pm0x1024 # model configuration

-1 ¢:\cx32\h6805 # include path

#

-m debug:x # debug: produce debug info

-m jmp:,,tjmptab.s # jmp: optimize function call

-m nobss:,bss # nobss: do not use bss

-m nocst:,ct # nocst: constant in text section
-m nsh:,nsh# nsh: static not shared

-m rev:rb # rev: reverse bit field order

-m split:,sf # functions in different sections

318 Modifying Compiler Operation © 2003 COSMIC Software

Changing the Default Options

The following command line:

cx6805 hello.c

in combination with the above configuration file directs the cx6805
compiler to execute the following commands:

cp6805 -0 \2.cx1 -u -mOx1024 -i\cx32\h6805 hello.c
cg6805 -0 \2.cx2 \2.cx1l

c06805 -0 \2.cx1 \2.cx2

ca6805 -0 hello.o -1\cx32\h6805 \2.cx1

Changing the Default Options

To change the combination of options that the compiler will use, edit
the configuration file and add your specific options using the -p (for the
parser), -g (for the code generator), -o (for the optimizer) and -a (for the
assembler) options. If you specify an invalid option or combination of
options, compilation will not proceed beyond the step where the error
occurred. You may define up to 60 such options.

Creating Your Own Options
To create a programmable option, edit the configuration file and define
the parametrable option with the -m* option. The string * has the fol-
lowing format:

name:popt,gopt,oopt,aopt,exclude. ..

The first field defines the option name and must be ended by a colon
character ‘:’. The four next fields describe the effect of this option on
the four passes of the compiler, respectively the parser, the generator,
the optimizer and the assembler. These fields are separated by acomma
character *,’. If no specific option is needed on a pass, thefield hasto be
specified empty. The remaining fields, if specified, describe a exclusive
relationship with other defined options. If two exclusive options are
specified on the command line, the compiler will stop with an error
message. You may define up to 20 programmable options. At least one
field has to be specified. Empty fields need to be specified only if ause-
ful field hasto be entered after.

© 2003 COSMIC Software Modifying Compiler Operation 319

E Example

In the following example:

-m di1l:1,dl1,,,d12# dl1: line option 1
-m di2:1,d12,,,d11# dl1: line option 2

the two options dI1 and dI2 are defined. If the option +dI1 is specified
on the compiler command line, the specific option -| will be used for the
parser and the specific option -dl1 will be used for the code generator.
No specific option will be used for the optimizer and for the assembler.
The option di1 is also declared to be exclusive with the option di2,
meaning that di1 and dI2 will not be allowed together on the compiler
command line. The option dI2 is defined in the same way.

Example

The following command line

‘ cx6805 +nobss +rev hello.c

in combination with the previous configuration file directs the cx6805
compiler to execute the following commands:

cp6805-0 \2.cx1 -u -mOx1024 -rb-i1\cx32\h6805 hello.c
cg6805 -0 \2.cx2 -bss \2.cx1

co6805 -0 \2.cx1 \2.cx2

ca6805-0 hello.o -i1\cx32\h6805 \2.cx1

320 Modifying Compiler Operation © 2003 COSMIC Software

APPENDI X

C

MC68HCO05 M achine
Library

This appendix describes each of the functions in the Machine Library
(libm). These functions provide the interface between the MC68HC05
microcontroller hardware and the functions required by the code gener-
ator. They are described in reference form, and listed alphabetically.

Note that machine library functions handle values as follows:

* integer inaregister pair, ax, x and the memory location c_h, or in
the a register and the memory location ¢ reg. The a register
always hold the less significant byte. The x register holds the most
significant byte when used by the register pair ax, and holds the
less significant byte when used by the register x and the memory
location c_h.

* longs and floats in the four byte memory location c_Ireg, (“float
register” or “long register” depending on context).

e pointer to long or float in internal memory in x, and in x and the
memory location ¢_h otherwise.

© 2003 COSMIC Software MC68HCO5 Machine Library 321

The library functions using a pointer to external memory (or code) have
a name beginning with the ‘x’ letter, and the pointer is located in the
pair composed by the x register for the lower byte, and the memory
location c_h for the upper byte. The following describes only the func-
tion handling data in internal memory. Their equivalent functions have
the same description except for the pointer location and size.

322 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_bitfO

¢ _bitf0

Description
Update a char bitfield in extended memory

Syntax

; bitfield address in x and c_h
; mask in a
; value in c_reg

Jjsr c_bitf0

Function
¢ _hitfO is used to update a bitfield located in extended memory by a

new value located in the memory location ¢ _reg. The value loaded from
extended memory isfirst and ed with the mask located in the a register.
It is then or’ed with the value in ¢ reg and stored back in extended
memory.

Return Value
None.

See Also
c_hitfl

© 2003 COSMIC Software MC68HCO5 Machine Library 323

C Library - c_hitfl
c_bitfl

Description
Update an int bitfield in extended memory

Syntax

; bitfield address in x and c_h
; mask in a
; value in c_reg

jsr c_bitfl

Function
¢ _hitfl is used to update the second byte of an int bitfield located in
extended memory by anew value located in the memory location ¢_reg.
The value loaded from extended memory is first and’ ed with the mask
located in the a register. It is then or’ed with the value in ¢_reg and
stored back in extended memory.

Return Value
None.

See Also
c_hitf0

324 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_call

c_call

Description
Cdll an indirect function

Syntax

; Function address in x and c_h
jsr c_call

Function
c_call calsthe function whose addressisin the x register and the mem-

ory location c_h. c_call isused if the indirect function is called without
argument, or with only one char argument.

Return Value
c_call returns what the called function returns.

See Also

c calla

© 2003 COSMIC Software MC68HCO5 Machine Library 325

I!il CLibrary - c_calla

c calla

Description
Call an indirect function

Syntax

; function address in x and c_h
jsr c_calla

Function
c_calla cals the function whose address is in the x register and the
memory location ¢_h. c¢_calla is used if the indirect function is called
with only oneint argument.

Return Value
c_calla returns what the called function returns.

See Also
c call

326 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_cdiv

c_cdiv

Description
Quotient of unsigned integer division

Syntax

; dividend In a register

; divisor in x and c_h
Jsr c_cdiv

; quotient in a

Function
c_cdiv divides the unsigned byte in a by the two byte unsigned integer

in the x register and the memory location ¢_h. Values are assumed to be
unsigned. If division by zero is attempted, the result is the unchanged
dividend.

Return Value
The quotient isin a. Flags are not meaningful upon return.

© 2003 COSMIC Software MC68HCO5 Machine Library 327

C Library - ¢c_dxmov

c_dxmov

Description
Copy astructure into another

Syntax

; pointer to source in X
; pointer to destination in a
; size iIn c_reg

jsr c_ddmov

Function
¢_dxmov copy the source structure pointed by the x register into the
structure pointed by the a register. The structures are in the zero page
section (.bsct), so one byte addresses are enough. The structure size is
in the c_reg memory location.

Return Value
None.

See Also

C_stmov, ¢_xdmov, ¢_xxmov

328 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_eewbf

c_eewbf

Description
Eeprom bit field update

Syntax

; bitfield address in x and c_h
; value in c_reg
; mask in a

Jjsr c_eewbf

Function
c_eewbf updates a hitfield byte located in egprom with a new value.

The new valueisin c_reg. The byte addressin eepromisin x and c_h,
and the mask isin a. The function waits for the time necessary to pro-
gram the new value.

See Also
C_eewstr

© 2003 COMIC Software MC68HCO5 Machine Library 329

I!il C Library - c_eewrc

C_eewrc

Description
Write a char int in eeprom

Syntax

; byte address in x and c_h
; value in a
Jjsr c_eewrc

Function

C_eewrc writes a byte in eeprom. The new byte value isin a and its
address in eeprom isin x and ¢_h. The function tests if the erasure is
necessary, and do it only in that case. Then if the new value is different
from one in eeprom, the new byte is programmed. The function waits
for the time necessary to program correctly the byte. The delay function
included in the same module assumes that the clock frequency is 2
Mhz. The function does not test if the byte address is in the address
range corresponding to the existing eeprom. These addresses may
change in further versions of the processor.

See Also

c_eewrl, c_eewrw

330 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_eewrl

C_eewr|

Description
Writealong int in eeprom

Syntax

; long address in x and c_h
; value in long register
Jjsr c_eewrl

Function
c_eewr| writesalong int in eeprom. The new valueisin the long regis-
ter, and its address in eepromisin x and ¢_h. Each byte is programmed
independently by the c_eewrc function.

See Also

C_eewrc, C_eewrw

© 2003 COMIC Software MC68HCO5 Machine Library 331

C Library - c_eewrw

C_eewrw

Description
Write a short int in eeprom
Syntax
; word address in x and c_h
; value in a and c_reg
Jjsr c_eewrw
Function

C_eewrw writes ashort int in eeprom. The new valueisin a and c_reg,
and its address in eeprom is in x and c_h. Each byte is programmed
independently by the c_eewrc function.

See Also

Cc_eewrc, c_eewrl|

332 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_eewstr

C_eewstr

Description
Move a structure in eeprom

Syntax

; destination address in x and c_h
; source address in c_reg
; structure size in a

Jsr c_eewstr

Function
C_eewstr moves a structure into an eeprom memory location. Pointer to

sourceisin c_reg, and pointer to destination isin x and ¢_h. The struc-
ture size is in a. Each byte is programmed independently by the
¢_eewrc function.

See Also
c_eewbf, c_eewrc

© 2003 COSMIC Software MC68HCO5 Machine Library 333

C Library - c_fadd
c fadd

Description
Add float to float

Syntax

; left in float register

; pointer to right in x register
jsr c_fadd

; result in float register

Function
¢ _fadd adds the float in float register to the float indicated by the x reg-
ister. No check is made for overflow.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_fsub

334 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_fcmp

c_fcmp

Description
Compare floats

Syntax

; left in float register

; pointer to right in X register
Jjsr c_fcmp

; result in flags

Function
c_femp comparesthefloat in float register with the float pointered at by
the x register.

Return Value
The N and Z flags are set to reflect the value (Ieft-right).

© 2003 COSMIC Software MC68HCO5 Machine Library 335

I!il C Library - c_fdiv

c_fdiv

Description
Divide float by float

Syntax

; left in float register

; pointer to right in x register
Jsr c_fdiv

; result in float register

Function

¢ fdivdividesthefloat in float register by the float pointered at by the x
registe.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

336 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_fgadd

c fgadd

Description
Add float to float in memory

Syntax

; pointer to left in X register
; right in float register

Jjsr c_fgadd
; result in memory

Function
¢ _fgadd adds the float in the float pointered at by the x register to the

float register.

Return Value
The resulting value is stored at the location pointered at by the x regis-

ter, meaning that the left operand is updated. Flags have no meaningful
value upon return.

See Also
c_fgsub

© 2003 COSMIC Software MC68HCO5 Machine Library 337

C Library - c_fgmul

c_fgmul

Description
Multiply float by float in memory

Syntax

; pointer to left In X register
; right in float register

Jsr c_fgmul
; result in memory

Function

¢_fgmul multiplies the float in float register by the float pointered at by
the x register.

Return Value

The resulting value is stored at the location pointered at by x. Flags
have no meaningful value upon return.

338 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_fgsub

c_fgsub

Description
Subtract float from float in memory

Syntax

; pointer to left in Xx register
; right in float register

jsr c_fgsub
; result in memory

Function
c_fgsub subtractsthe float pointered at by the x register from the float in
float register. No check is made for overflow.

Return Value
The resulting value is stored at the location pointered at by x. Flags
have no meaningful value upon return.

See Also
¢ _fgadd

© 2003 COMIC Software MC68HCO5 Machine Library 339

C Library - c¢_fmul

c_fmul

Description
Multiply float by float
Syntax
; left in float register
; pointer to right in x register
jsr c_fmul
; result in float register
Function
¢_fmul multiplies the float in float register by the float pointered at by
the x register.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return

340 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_fneg

c fneg

Description
Negate a float

Syntax

; operand in float register
Jsr c_fneg
; result in operand

Function
c_fneg negates the float pointered at by the float register.

Return Value

The resulting value isin float register. Flags have no meaningful value
upon return.

© 2003 COSMIC Software MC68HCO5 Machine Library 341

C Library - c¢_fsub

c fsub

Description
Subtract float from float

Syntax

; left in float register

; pointer to right in x register
jsr c_fsub

; result in float register

Function
¢ _fsub subtracts the float pointed to by the x register from the float in
float register. No check is made for overflow.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
¢ _fadd

342 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_ftoi

c_ftoi

Description
Convert float to integer

Syntax

; Float in float register
Jjsr c_ftoi
; result in a and c_reg

Function
c_ftoi convertsthefloat in float register to atwo byteinteger whose less

significant byte is in the a register, and the most significant byte in the
memory location ¢_reg. No check is made for overflow.

Return Value
The resulting value isin a and ¢_reg. Flags have no meaningful value

upon return.

See Also
c_ftol, c_itof, c_ital, c_ltof

© 2003 COSMIC Software MC68HCO5 Machine Library 343

C Library - c_ftol

c_ftol

Description
Convert float into long integer

Syntax

; Float in float register
jsr c_ftol
;result in long register

Function
c_ftol converts the float in float register to a four byte integer in long
register. No check is made for overflow.

Return Value

The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_ftai, c_itof, c_ital, c_Itof

344 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_ftox

c_ftox

Description
Convert float to integer

Syntax

; Float in float register
Jjsr c_ftox
; result in ax register

Function
c_ftox converts the float in float register to a two byte integer whose
less significant byte isin the a register, and the most significant byte in
the x register. No check is made for overflow.

Return Value

The resulting value is in ax. Flags have no meaningful value upon
return.

© 2003 COSMIC Software MC68HCO5 Machine Library 345

C Library - c_fzmp

c_fzmp

Description
Compare afloat in memory to zero

Syntax

; pointer to operand In X register
jsr c_fzmp
; result in flags

Function
¢_fzmp compares the float pointered by the x register against zero.

Return Value
The N and Z flags are set to reflect the operand value.

346 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_getb

C_getb

Description
Load a byte from extended memory

Syntax

; byte address in x and c_h
Jjsr c_getb
; result iIn a

Function
c_getb loads a byte from extended memory using a pointer loaded in x
and c_h. Theresult isleft in the a register.

Return Value
The byteisloaded in the a register. Flags are set accordingly.

See Also
c_getl, c_getw, ¢c_putb, c_putl, ¢c_putw

© 2003 COSMIC Software MC68HCO5 Machine Library 347

C Library - c_getl
C_getl

Description
Load along integer from extended memory

Syntax

; long address in x and c_h
jsr c_getl
; result in long register

Function
c_getl loads a long integer from extended memory using a pointer
loaded in x and ¢_h. Theresult isleft in the long register.

Return Value
The byte is loaded in the long register. Flags have no meaningful value
upon return.

See Also
C_getb, c_getw, c_putb, c_putl, c_putw

348 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_getw

C_getw

Description
Load aword from extended memory

Syntax

; word address in x and c_h
Jjsr c_getw
; result In a and x

Function
c_getw loads aword from extended memory using a pointer loaded in x

and c_h. Theresult isleft in the a and x registers.

Return Value
The word is loaded in the a and x registers. Flags have no meaningful

value upon return.

See Also
C_getb, c_getl, c_putb, c_putl, ¢c_putw

© 2003 COSMIC Software MC68HCO5 Machine Library 349

C Library - c_idiv

c_idiv

Description
Quotient of integer division

Syntax

; dividend in a and c_reg

; divisor in x and c_h
Jsr c_idiv

; quotient in a and c_reg

Function
c_idiv divides the two byte integer in the a register and the memory
location c_reg, by the two byte integer in the x register and the memory
location ¢_h. Values are assumed to be signed. If division by zero is
attempted, the result is the unchanged dividend.

Return Value

The quotient is placed in a and c_reg. Flags have no meaningful value
upon return.

See Also

c_udiv

350 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_imul

c_imul

Description
Integer multiplication

Syntax

; left In a and c_reg

; right in x and c_h
Jsr c_imul

; result in a and c_reg

Function
¢_imul multiplies the two byte integer in the a register and the memory
location c_reg, by the two byte integer in the x register and the memory
location ¢_h. No check is made for overflow.

Return Value

The resulting value isin a and ¢_reg. Flags have no meaningful value
upon return

© 2003 COSMIC Software MC68HCO5 Machine Library 351

C Library - c_itof

C_Itof

Description
Convert integer into float

Syntax

; operand in a and c_reg
jsr c_itof
; result in float register

Function
c_itof converts the two byte integer in the a register and the memory
location c_reg, to afloat stored in float register.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_ltof, c_ultof, c_xtof, c_uitof, c_uxtof

352 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_itol

Cc_itol

Description
Convert integer into long

Syntax

; operand In a and c_reg
Jjsr c_itol
; result in long register

Function
c_itol converts the two byte integer in the a register and the memory

location c_reg, to along integer stored in long register.

Return Value
The resulting value isin long register. Flags have no meaningful value

upon return.

See Also
C_xtol, c_uitol, ¢c_uxtol

© 2003 COMIC Software MC68HCO5 Machine Library 353

C Library - c_jltab
c jltab

Description
Perform C switch statement on long

Syntax

; value in long register
; table address in x and c_h
jmp c_jltab

Function
¢ jltab is called to switch to the proper code segment, depending on a
value and an address table. The top of the table isfound in the x register
and the memory location ¢_h, and consists of a count followed by alist
of pairs. A pair consists of avalue followed by an address. The pair list
is ended by the default address. All values are four byte integers. All
addresses and the count are two byte integers.

Return Value
c_jltab jumps to the proper code. It never returns.

354 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_ladd

c ladd

Description
Long integer addition

Syntax

; left in long register

; pointer to right in x register
Jjsr c_ladd

; result in long register

Function
¢ _ladd adds the four byte integer in long register and the four byte inte-
ger pointered at by the x register.

Return Value
Theresultisin long register. Flags are not meaningful upon return.

See Also
c_lcmp, c_Isub

© 2003 COSMIC Software MC68HCO5 Machine Library 355

C Library - c_land

c land

Description
Bitwise AND for long integers

Syntax

; left in long register

; pointer to right in X register
jsr c_land

; result in long register

Function
¢_land operates a bitwise AND between the operands. Each operand is
taken to be afour byte integer.

Return Value
Theresultisin long register. Flags are not meaningful upon return.

See Also

c_lor, c_Ixor

356 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_lcmp

c_lcmp

Description
Long integer compare

Syntax

; left in long register

; pointer to right in x register
Jjsr c_lcmp

; result in long flags

Function
¢_lemp compares the four byte integer in long register to the four byte
integer pointered by the x register.

Return Value
Flags are set accordingly.

See Also
¢ ladd, c_Isub

© 2003 COSMIC Software MC68HCO5 Machine Library 357

C Library - c_ldiv

c_ldiv

Description
Quotient of long integer division

Syntax

; dividend in long register

; pointer to divisor in X register
Jsr c_ldiv

;quotient in long register

Function
¢ _ldiv divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be signed. If
division by zero is attempted, the result is the unchanged dividend.

Return Value

The quotient isin long register and the flags are not meaningful upon
return.

See Also

¢ _ludv, c_Imod, c_lumd

358 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_lgadd

c_lgadd

Description
Long addition

Syntax

; pointer to left In X register
; right in long register

Jjsr c_lgadd
; result in left

Function
¢ _lgadd performs the long addition of the value pointered by the x reg-
ister and the value in long register.

Return Value

Theresult is stored at the location pointered by the x register. Flags are
not meaningful upon return.

© 2003 COSMIC Software MC68HCO5 Machine Library 359

C Library - c_lgand

c lgand

Description
Long bitwise AND

Syntax

; pointer to left In X register
; right in long register

jsr c_lgand
; result in left

Function

¢_lgand performs the long bitwise AND of the value pointered by the x
register and the value in long register.

Return Value
The result is stored at the location pointered at by the x register. Flags
are not meaningful upon return.

360 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_Iglsh

c lglsh

Description
Long shift left

Syntax

; pointer to long in X register

; shift count In a register
jsr c_Ilglsh

; result in memory

Function
c_lglsh performsthe long left shift of the value pointered by the x regis-

ter by the bit count in the a register. No check is done against silly
counts.

Return Value

The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

© 2003 COSMIC Software MC68HCO5 Machine Library 361

C Library - c_Igmul

c_lgmul

Description
Long multiplication in memory

Syntax

; pointer to left In X register
; right in long register

Jsr c_lgnul
; result in left

Function

¢_lgmul performs the long multiplication of the value pointered by the x
register, by the valuein long register.

Return Value
The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

See Also

c_Imul

362 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_Igneg

c_lgneg

Description
Negate a long integer in memory

Syntax

; pointer to operand in X register
Jsr c_Ineg
; result in memory

Function
¢_lgneg negates the four byte integer pointered by the x register.

Return Value
The result isin the location pointered by x. The flags are not meaning-

ful upon return.

See Also
¢ Ineg

© 2003 COSMIC Software MC68HCO5 Machine Library 363

C Library - c_lgor

c_lgor

Description
Long bitwise OR

Syntax

; pointer to left in Xx register
; right in long register

jsr c_lgor
; result in left

Function

¢ _lgor performs the long bitwise OR of the value pointered by the x
register and the value in long register.

Return Value

The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

364 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_Igrsh

c _lgrsh

Description
Signed long shift right

Syntax

; pointer to long in X register

; shift count in a register
jsr c_Igrsh

; result in memory

Function
¢ _lgrsh performs the signed long right shift of the value pointered by
the x register and the value in long register. No check is done against
silly counts. Because the value is signed, arithmetic shift instructions
are used.

Return Value

The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

© 2003 COSMIC Software MC68HCO5 Machine Library 365

C Library - c_Igsub
c lgsub

Description
Long subtraction

Syntax

; pointer to left in Xx register
; right in long register

jsr c_lIgsub
; result in left

Function
¢ _lgsub evaluates the (long) difference between the value pointered by
the x register and the value in long register.

Return Value

The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

366 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_Igursh

c _lgursh

Description
Unsigned long shift right

Syntax

; pointer to long in X register

; shift count in a register
jsr c_lgursh

; result in memory

Function
¢ _lgursh performs the unsigned long right shift of the value pointered
by the x register and the value in long register. No check is done against
silly counts. Because the value is unsigned, logical shift instructions are
used.

Return Value

The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

© 2003 COSMIC Software MC68HCO5 Machine Library 367

C Library - c_Igxor

c_lgxor

Description
Long bitwise exclusive OR

Syntax

; pointer to left in Xx register
; right in long register

jsr c_lIgxor
; result in left

Function
¢ _lgxor performs the long bitwise Exclusive OR of the value pointered
by the x register and the value in long register.

Return Value

The result is stored in the location pointered by x. Flags are not mean-
ingful upon return.

368 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_llsh

c_llsh

Description
Long integer shift left

Syntax

; operand in long register

; shift count in a register
Jsr c_llIsh

; result in long register

Function
¢ _llsh shifts left four byte integer in long register by the number of
places specified by the a register. A zero count leaves the long register
unchanged. No check is made for invalid counts.

Return Value
The resulting value is in long register. Flags are not meaningful upon
return.

See Also
c_lrsh, c_lursh

© 2003 COSMIC Software MC68HCO5 Machine Library 369

C Library - ¢c_Imod

c_Imod

Description
Remainder of long integer division

Syntax

; left in long register

; pointer to right in x register
jsr c_Imod

; remainder in long register

Function
¢_Imod divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be signed. The
dividend isreturned if adivision by zero is attempted.

Return Value

The remainder is stored in long register. Flags are not meaningful upon
return.

See Also
c_lumd, c_ldiv, c_udiv

370 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_Imul

c_Imul

Description
Multiply long integer by long integer

Syntax

; left in long register

; pointer to right in x register
Jsr c_Imul

; result in long register

Function
¢_Imul multiplies the four byte integer in long register by the four byte
integer pointered by the x register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags are not meaningful upon

return.

See Also
c_lgmul

© 2003 COSMIC Software MC68HCO5 Machine Library 371

C Library - c_Ineg

c_Ineg

Description
Negate along integer

Syntax

; operand in long register
jsr c_neg
; result in long register

Function
¢_Ineg negates the four byte integer in long register.

Return Value
Theresult isin long register. The flags are not meaningful upon return.

See Also
¢ _lgneg

372 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_lor

c lor

Description
Bitwise OR with long integers

Syntax

; left in long register

; pointer to right in x register
jsr c_lor

; result in long register

Function
c_lor operates a bitwise OR between the contents of long register and

the long pointered by the x register. Each operand is taken to be a four
byte integer.

Return Value
Theresult isin long register. The flags are not meaningful upon return.

See Also

¢ _land, c_Ixor

© 2003 COSMIC Software MC68HCO5 Machine Library 373

CLibrary - c_Irsh
C_Irsh

Description
Long integer right shift

Syntax

; operand in long register

; shift count in a register
jsr c_Irsh

; result in long register

Function
¢ _Irshright shiftsthe four byteinteger in long register by the number of
bits specified by the a register. A zero count leaves the long register
unchanged. No check is made for invalid counts. The value is assumed
to be signed, so a negative value will stay negative as by an arithmetic
shift.

Return Value
The resulting value stays in long register. Flags are not meaningful
upon return.

See Also
c llsh, c_lursh

374 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_Irzmp

c lrzmp

Description
Long test against zero

Syntax

; operand in long register
jsr c_lrzmp
; result in the flags

Function
¢ _lIrzmp tests the value in the long register and updates the sign and

zero flags.

Return Value
Nothing, but the flags.

See Also
c lzmp

© 2003 COSMIC Software MC68HCO5 Machine Library 375

I!il C Library - c_lsub

c lsub

Description
Long integer subtraction

Syntax

; left in long register

; pointer to right in x register
jsr c_Isub

; result in long register

Function
¢ _lsub subtracts the four byte integer pointered by the x register from
the four byte integer in long register.

Return Value
Theresultisin long register. Flags are not meaningful upon return.

See Also
¢ _ladd, c_lcmp

376 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_ltof

c_ltof

Description
Convert long integer into float

Syntax

; operand in long integer
jsr c_ltof
; result in float register

Function
c_ltof converts the four byte integer in long register to afloat.

Return Value
The resulting value isin float register. Flags have no meaningful value

upon return.

See Also
c_ftoi, c_ftol, c_itof, c_itol

© 2003 COMIC Software MC68HCO5 Machine Library 377

C Library - c_ltor

c_ltor

Description
Load memory into long register

Syntax

; pointer to operand In X register
jsr c_ltor
; result in float register

Function
¢ _ltor loads the four byte integer pointered by the x register into the
long register.

Return Value

The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_rtol

378 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c¢_ludv

c ludv

Description
Quotient of unsigned long integer division

Syntax

; left in long register

; pointer to right in x register
jsr c_ludv

; quotient in long register

Function
¢ _ludv divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be unsigned.
Thedividend isreturned if adivision by zero is attempted.

Return Value
The quotient isin long register. Flags are not meaningful upon return.

See Also
c_ldiv, ¢_Imod, ¢_lumd

© 2003 COSMIC Software MC68HCO5 Machine Library 379

CLibrary - ¢_lumd

c lumd

Description
Remainder of unsigned long integer division

Syntax

; left in long register

; pointer to right in x register
jsr c_lumd

; remainder in long register

Function
¢_lumd divides the four byte integer in long register by the four byte
integer pointered by the x register. Values are assumed to be unsigned.
The dividend is returned if adivision by zero is attempted.

Return Value
The remainder isin long register. Flags are not meaningful upon return.

See Also

c_Imod, c_ldiv, c_ludv

380 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_lursh

c_lursh

Description
Unsigned long integer shift right

Syntax

; operand in long register

; shift count in a register
jsr c_lursh

; result in long register

Function
c_lursh right shifts the four byte integer in long register by the number
of bits specified by the a register. A zero count leaves the long register
unchanged. No check is made for invalid counts. The value is assumed
to be unsigned. The shift instruction used is therefore alogical shift.

Return Value
The resulting value is in long register. Flags are not meaningful upon

return.

See Also
c llsh, c_Irsh

© 2003 COSMIC Software MC68HCO5 Machine Library 381

C Library - c_Ixor

c_Ixor

Description
Bitwise exclusive OR with long integers

Syntax

; left in long integer

; pointer to right in x register
jsr c_Ixor

; result in long register

Function
c_Ixor operates a hitwise Exclusive OR between the contents of long

register and the long pointered by the x register. Each operand is taken
to be afour byte integer.

Return Value
Theresultisin long register. The flags are not meaningful upon return.

See Also

c land, c_lor

382 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_lzmp

c_lzmp

Description
Compare along integer to zero

Syntax

; pointer to operand iIn X register
Jjsr c_lzmp
; result in the flags

Function
¢_lzmp compares the four byte integer pointered by the x register to

Z€ero.

Return Value
Nothing, but the flags.

See Also
¢ lrzmp

© 2003 COSMIC Software MC68HCO5 Machine Library 383

C Library - c_putb
C_putb

Description
Store a byte in extended memory

Syntax

; byte address in x and c_h
; value in a
jsr c_putb

Function

c_putb stores the byte in the a register into extended memory using a
pointer loaded in x and c_h.

Return Value
None.

See Also
c_getb, c_getl,c_getw, ¢ _putl, ¢c_putw

384 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_putl

C_putl

Description
Store along integer in extended memory

Syntax

; long address in x and c_h
; value in long register
Jjsr c_putl

Function
c_putl stores the value in long register into extended memory using a

pointer loaded in x and c_h.

Return Value
None.

See Also
C_geth, c_getl, c_getw, c_putb, c_putw

© 2003 COSMIC Software MC68HCO5 Machine Library 385

C Library - c_putw
C_putw:

Description
Store aword in extended memory

Syntax

; word address in x and c_h
; value in a and x
jsr c_putw

Function

C_putw store the value in a and x registers into extended memory using
apointer loadedin x and c_h.

Return Value
None.

See Also
c_getb, c_getl, c_getw, c_putb, ¢ _putl

386 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_rtol

c_rtol

Description
Store long register in memory

Syntax

; pointer to destination In X register
; operand in long integer
jsr c_rtol

Function
c_rtol store the four byte integer in long register into the memory loca-

tion pointered by the x register.

Return Value
The resulting value is in the memory location pointered by x. Flags

have no meaningful value upon return.

See Also
c_ltor

© 2003 COSMIC Software MC68HCO5 Machine Library 387

C Library - c_sdiv
c_sdiv

Description
Quotient of signed integer division

Syntax

; dividend iIn a register

; divisor in x and c_h
jsr c_sdiv

; quotient in a

Function
c_sdiv divides the signed byte in a by the two byte signed integer in the
X register and the memory location ¢_h. Values are assumed to be

signed. If division by zero is attempted, the result is the unchanged div-
idend.

Return Value
The quotient isin a. Flags are not meaningful upon return.

388 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_smul

c_smul

Description
Multiply long integer by unsigned byte

Syntax

; left in long register

; right byte in a register
jsr c_smul

; result in long register

Function
¢_smul multiplies the four byte integer in long register by the unsigned
byte in the a register. No check is made for overflow.

Return Value
The resulting value is in long register. Flags are not meaningful upon

return.

See Also
c_lgmul

© 2003 COSMIC Software MC68HCO5 Machine Library 389

C Library - c_stmov

C_stmov

Description
Copy astructure into another

Syntax

; pointer to source in c_reg
; pointer to destination in X register
; size In a register

Jsr c_stmov

Function
c_stmov copy the source structure pointed by the memory location
C_reg into the structure pointed by the x register. The structures are in
the zero page section (.bsct), so one byte addresses are enough. The
structure size islocated in the a register.

Return Value
None.

See Also

c_dxmov, ¢_xdmov, c_xxmov

390 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_udiv

c_udiv

Description
Quotient of unsigned integer division

Syntax

; dividend in a and c_reg

; divisor in x and c_h
jsr c_udiv

; quotient in a and c_reg

Function
¢_udiv divides the two byte unsigned integer in a and the memory loca-
tion c_reg by the two byte unsigned integer in the x register and the
memory location ¢c_h. Values are assumed to be unsigned. If division by
zero is attempted, the result is the unchanged dividend.

Return Value
The quotient isin aand c_reg. Flags are not meaningful upon return.

See Also

c_idiv

© 2003 COSMIC Software MC68HCO5 Machine Library 391

C Library - c_uitof

c_uitof

Description
Convert unsigned integer into float

Syntax

; operand In a and c_reg
Jjsr c_uitof
; result in float register

Function
c_uitof converts the two byte unsigned integer in the a register and the
memory location ¢ _reg to afloat stored in float register.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_itof, c_ltof, c_ultof, c_xtof, c_uxtof

392 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_uitol

c_uitol

Description
Convert unsigned integer into long

Syntax

; operand In a and c_reg
Jjsr c_uitol
; result in long register

Function
c_uitol converts the two byte unsigned integer in the a register and the

memory location c_reg, to along integer stored in long register.

Return Value
The resulting value isin long register. Flags have no meaningful value

upon return.

See Also
c_ital, c_xtol, c_uxtol

© 2003 COSMIC Software MC68HCO5 Machine Library 393

C Library - c_ultof

c_ultof

Description
Convert unsigned long integer into float

Syntax

; long in long register
jsr c_ultof
; result in float register

Function

c_ultof converts the four unsigned byte integer in long register to a
float.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_itof, c_ltof, c_xtof, c_uitof, c_uxtof

394 MC68HCO5 Machine Library © 2003 COSMIC Software

C Library - c_uxtof

C_uxtof

Description
Convert unsigned integer into float

Syntax

; operand in ax register
Jsr c_uxtof
; result in float register

Function
¢_uxtof converts the two byte unsigned integer in the ax register pair to
afloat stored in float register.

Return Value

The resulting value isin float register. Flags have no meaningful value
upon return.

See Also

c_itof, c_Itof, c_ultof, c_xtof, c_uitof

© 2003 COSMIC Software MC68HCO5 Machine Library 395

C Library - c_uxtol

c_uxtol

Description
Convert unsigned integer into long

Syntax

; operand iIn ax register
jsr c_uxtol
; result in long register

Function
c_uxtol converts the two byte unsigned integer in the ax register pair to
along integer stored in long register.

Return Value

The resulting value is in long register. Flags have no meaningful value
upon return.

See Also
c_ital, c_xtol, c_uitol

396 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_xdmov

c_Xxdmov

Description
Copy a structure into another

Syntax

; pointer to source in a
; pointer to destination in X
; size in c_reg

Jsr c_xdmov

Function
¢ xdmov copy the source structure pointed by the a register into the
structure pointed by the x register. The structures are in the zero page
section (.bsct), so one byte addresses are enough. The structure size is
in the c_reg memory location.

Return Value
None.

See Also

c_dxmov, ¢_stmov, C_Xxmov

© 2003 COSMIC Software MC68HCO5 Machine Library 397

C Library - c_xtof

c_xtof

Description
Convert integer into float

Syntax

; operand iIn ax register
jsr c_xtof
; result in float register

Function
c_xtof converts the two byte integer in the ax register pair to a float
stored in float register.

Return Value

The resulting value is in float register. Flags have no meaningful value
upon return.

See Also
c_itof, c_Itof, c_ultof, ¢_uitof, ¢c_uxtof

398 MC68HCO05 Machine Library © 2003 COSMIC Software

C Library - c_xtol

c_xtol

Description
Convert integer into long

Syntax

; operand in ax register
Jjsr c_xtol
; result in long register

Function
c_xtol convertsthe two byte integer in the ax register pair to along inte-

ger stored in long register.

Return Value
The resulting value isin long register. Flags have no meaningful value

upon return.

See Also
c_itol, c_uitol, c_uxtol

© 2003 COSMIC Software MC68HCO5 Machine Library 399

APPENDI X

D

Compiler Passes

The information contained in this appendix is of interest to those users
who want to modify the default operation of the cross compiler by
changing the configuration file that the cx6805 compiler uses to control
the compilation process.

This appendix describes each of the passes of the compiler:

Ccp6805 the parser

cg6805 the code generator

06805 the assembly language optimizer
ct6805 the jump table creator

© 2003 COSMIC Software Compiler Passes 401

E The cp6805 Parser

The cp6805 Parser

cp6805 is the parser used by the C compiler to expand #defines,
#includes, and other directives signalled by a#, parse the resulting text,
and outputs a sequentia file of flow graphs and parse trees suitable for
input to the code generator cg6805.

Command Line Options
cp6805 accepts the following options, each of which is described in

detail below:
cp6805 [options] file

-ad expand defines in assembly
-ck extra type checkings
-d*> define symbol=value
-e run preprocessor only
+e* error file name
-h*> include header
—-1*> include path
-1 output line information
-m# model configuration
-nb no bitfield packing
-nc no const replacement
-ne no enum optimization
-np allow pointer narrowing
-0* output file name
-p need prototypes
-pb pack bit variables
-rb reverse bitfield order
-sa strict ANSI conformance
-u plain char is unsigned
-xd debug info for data
-Xp no path in debug info
-XX extended debug info
-X output debug info

-ad enable #define expansion inside inline assembly code

between #asm and #endasm directives. By default, #define
symbols are expanded only in the C code.

-ck direct the compiler to enforce stronger type checking.

402 Compiler Passes © 2003 COSMIC Software

The ¢p6805 Parser

-g*n specify * as the name of a user-defined preprocessor sym-
bol (#define). The form of the definition is
-dsymbol[=value]; the symbol is set to 1 if value is omit-
ted. You can specify up to 60 such definitions.

-e run preprocessor only. cp6805 only outputs lines of text.
+e* log errors in the text file * instead of displaying the mes-

sages on the terminal screen.

-h*> include files before to start the compiler process. You can
specify up to 60 files.

-i*> specify include path. You can specify up to 60 different
paths. Each path is a directory name, not terminated by
any directory separator character.

| output line number information for listing or debug.

-m# the value # is used to configure the parser behaviour. It isa
two bytes value, the upper byte specifies the default space
for variables, and the lower byte specifies the default space
for functions. A space byte is the or’ed value between a
size specifier and several optiona other specifiers. The
alowed size specifiers are:

0x10 |@tiny
0x20 | @near
0x30 | @far

Allowed optionals specifiers are:

0x02 | @pack
0x04 | @nostack

Notethat all the combinations are not significant for all the
target processors.

-nb do not pack bitfield.

© 2003 COMIC Software Compiler Passes 403

E The cp6805 Parser

-nc

-he

_np

_pb

-rb

404 Compiler Passes

do not replace an access to an initialized const object by its
value.

do not optimize size of enum variables. By default, the
compiler selects the smallest integer type by checking the
range of the declared enum members. This mechanism
does not alow uncomplete enum declaration. When the
-ne option is selected, all enum variables are alocated as
int variables, thus allowing uncompl ete declarations, asthe
knowledge of al the members is no more necessary to
choose the proper integer type.

alow pointer narrowing. By default, the compiler refuses
to cast the pointer into any smaller object. This option
should be used carefully as such conversions are truncating
addresses.

write the output to the file *. Default is STDOUT for out-
put if -e is specified. Otherwise, an output file name is
required.

enforce prototype declaration for functions. An error mes-
sageisissued if afunction is used and no prototype decla-
ration is found for it. By default, the compiler accepts both
syntaxes without any error.

pack Bool local variables . By default, Bool local varia-
bles are allocated on one byte each.

reverse the bitfield fill order. By default, bitfields are filled
from less significant bit (LSB) to most significant bit
(MSB). If this option is specified, filling works from most
significant bit to less significant bit.

enforce a strict ANSI checking by rejecting any syntax or
semantic extension. This option also disables the enum
size optimization (-ne).

take a plain char to be of type unsigned char, not signed
char. This also affectsin the same way strings constants.

© 2003 COSMIC Software

The ¢p6805 Parser

-X generate debugging information for use by the cross
debugger or some other debugger or in-circuit emulator.
The default is to generate no debugging information.

-xd add debug information in the object file only for data
objects, hiding any function.

-Xp do not prefix filenames in the debug information with any
absolute path name. Debuggers will have to be informed
about the actual files location.

-XX add debug information in the object file for any label
defining code or data.

Return Satus
cp6805 returns success if it produces no error diagnostics.

Example
cp6805 is usually invoked before cg6805 the code generator, asin:

cp6805 -0 \2.cx1 -u -i \cx32\h6805 file.c
cg6805 -0 \2.cx2 \2.cx1

© 2003 COMIC Software Compiler Passes 405

E The cg6805 Code Generator

The cg6805 Code Generator

€g6805 is the code generating pass of the C compiler. It accepts a
sequential file of flow graphs and parse trees from cp6805 and outputs a
sequentia file of assembly language statements.

As much as possible, the compiler generates freestanding code, but, for
those operations which cannot be done compactly, it generates inline
callsto a set of machine-dependent runtime library routines.

Command Line Options
€g6805 accepts the following options, each of which is described in

detail below:
cg6805 [options] file

-a optimize _asm code
-bss do not use bss
-ct constants in code
-dI# output line information
+e* error file name
-f full source display
-1 output listing
-na do not xdef alias name
-no do not use optimizer
-nsh do not share locals
-0* output file name
-sf split function sections
-V verbose

-a optimize _asm code. By default, the assembly code

inserted by a_asmcall isleft unchanged by the optimizer.

-bss inhibit generating code into the bss section.

-ct output constant in the .text section. By default, the com-
piler outputs literals and constants in the .const section.

-di# produce line number information. # must be either ‘1’ or
‘2'. Line number information can be produced in two
ways: 1) function name and line number is obtained by
specifying -dl1; 2) file name and line number is obtained

406 Compiler Passes

© 2003 COSMIC Software

The cg6805 Code Generator

by specifying -dI2. All information is coded in symbols
that are in the debug symbol table.

+e* log errors in the text file * instead of displaying the mes-
sages on the terminal screen.

-f merge al C source lines of functions producing code into
the C and Assembly listing. By default, only C lines actu-
aly producing assembly code are shown in the listing.

| merge C source listing with assembly language code; list-
ing output defaults to <file>.Is.

-na do not produce an xdef directive for the equate names cre-
ated for each C object declared with an absolute address.

-No do not produce special directives for the post-optimizer.

-nsh do not share memory areas alocated for function local
areas.

-0* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-of produce each function in a different section, thus allowing

the linker to suppress a function if it is not used by the
application. By default, al the functions are packed in a
single section.

-V When this option is set, each function name is send to
STDERR when ¢g6805 starts processing it.

Return Satus
€g6805 returns successiif it produces no diagnostics.

Example
€g6805 usually follows cp6805 as follows:

© 2003 COMIC Software Compiler Passes 407

E The cg6805 Code Generator

cp6805 -0 \2.cx1 -u -i\cx\h6805 Ffile.c
cg6805 -0 \2.cx2 \2.cx1

408 Compiler Passes © 2003 COSMIC Software

The co6805 Assembly Language Optimizer

The co6805 Assembly Language Optimizer

€06805 is the code optimizing pass of the C compiler. It reads source
files of MC68HCO5 assembly language source code, as generated by
the cg6805 code generator, and writes assembly language statements.
€06805 is a peephole optimizer; it works by checking lines function by
function for specific patterns. If the patterns are present, co6805
replaces the lines where the patterns occur with an optimized line or set
of lines. It repeatedly checks replaced patterns for further optimizations
until no more are possible. It deals with redundant load/store opera-
tions, constants, stack handling, and other operations.

Command Line Options
c06805 accepts the following options, each of which is described in
detail below:

co6805 [options] <file>
-C keep original lines as comments
-d* disable specific optimizations
-0* output file name
-t* table file name
-V print efficiency statistics

-C leave removed instructions as comments in the output file.

-d* specify a list of codes allowing specific optimizations
functions to be selectively disabled.

-0* write the output to the file * and write error messages to
STDOUT. The default is STDOUT for output and
STDERR for error messages.

-t* use the jump table *, allowing the optimizer to perform
automatically the function name replacement.

NOTE

The current implementation requires the jump table file name to be:
jmptab.s.

© 2003 COMIC Software Compiler Passes 409

E The co6805 Assembly Language Optimizer

-V write alog of modificationsto STDERR. This displaysthe
number of removed instructions followed by the number of
modified instructions.

If <file> is present, it is used as the input file instead of the default
STDIN.

Disabling Optimization

When using the optimizer with the -c option, lines which are changed or
removed are kept in the assembly source as comment, followed by a
code composed with a letter and a digit, identifying the internal func-
tion which performs the optimization. If an optimization appears to do
something wrong, it is possible to disable selectively that function by
specifying its code with the -d option. Several functions can be disabled
by specifying a list of codes without any whitespaces. The code |etter
can be enter both lower or uppercase.

Return Satus
c06805 returns successiif it produces no diagnostics.

Example
c06805 is usually invoked after cg6805 as follows:

cp6805 -0 \2.cx1 -u -i\cx\h6805 file.c
cg6805 -0 \2.cx2 \2.cx1
c06805 -o file.s \2.cx2

410 Compiler Passes © 2003 COSMIC Software

The ct6805 Utility

The ct6805 Utility

The ct6805 utility reads the executable file produced by the linker and
finds the name of all the object files of the application. ct6805then
scans al the listing files, if any, and creates as output an assembly
source file containing a replacement label followed by a jump instruc-
tion to the target function, for each of the selected function. The
selected function list is built by extracting the sixteen most used func-
tion names following ajp instruction, including the library functions.

Command Line Options
ct6805 accepts the following options, each of which is described in

detail below:

ct6805 [options] <file>
-n# maximum number of functions
-o* output file name
Y echo processed file names

-n# maximum number of functions output in the jump table.
Default valueis 16, producing a 48 bytes wide area.

-0* writes the jump table to the file *.

-V writes the name of the scanned files on the terminal screen.

Return Satus
Ct6805 returns successiif it produces no diagnostics.

Example
For example, from the acia.h05 file built by the test program provided

with the package, run the following command:

ct6805 -0 jmptab.s acia-h05

This command produces the following result in the jmptab.s file:

JUMP TABLE FOR 68HCO5
Copyright (c) 1995 by COSMIC Software

R_main:

© 2003 COMIC Software Compiler Passes 411

E The ct6805 Utility

jmp _main
R_outch:
jmp _outch
R_getch:
jmp _getch
xdef R_main ;1

xref _main
xdef R_outch

xref _outch ;1
xdef R_getch

xref _getch ;1
end

412 Compiler Passes © 2003 COSMIC Software

Symbols
#asm
directive 402
#asm directive 46
#endasm
directive 402
#endasm directive 46
#pragma
@near eeprom space directive 42
@near space directive 41
@tiny space directive 42
directivefor inlining 46
eeprom space directive 42
#pragma asm directive 46
#pragma endasm directive 46
+grp directive 247
+seg option 244
.bit
section 35
.bsct
generated in 25
label defined in 161
.bss
section 41
.const
output section 406
segment 254
.data
section 41
section,@near modifier 25
.eeprom
section 42

| ndex

.ubsct
data generated in 25
@eeprom
.eeprom section 43
type qualifier 12, 42
@inline
modifier 53
user macro 54
@interrupt
function 49
qualifier 49
@near
.data,.bss sections 43
modifier 55
type qualifier 25
variable 55
@near pointers 70
@noshare qualifier 45
@nosvf
qualifier 49
@svlreg
qualifier 50
@tiny
.bsct,.ubsct sections 43
space modifier 55
variable 55
__idesc__ 257, 258
__memory symbol 21
_asm
argument string size 47
assembly sequence 47
code optimization 406

Index 1

in expression 48

lowercase mnemonics 48

return type 48

uppercase mnemonics 48
_asm()

inserting assembler function 67
_asm() function 71
_Bool

assign expression to 35

consecutive fields 35

pack local variable 404

packed variables 35

referencing absolute address 39

type name 35

variable 35

Numerics

68HCO05
addressing mode 161
mnemonics 160

8-bit precision,operation 11

A

abort function 72

abs function 73

absolute
address 270
addressin listing 281
hex file generator 9
listing file 281
listing utility 9
map section 156
path name 405
reference address 38
section relocation 252
symbol 246
symbol inlibrary 284
symbol table 243
symbol tables 264
symbol,flagged 264

absolute section 215, 224

acos function 74

2 Index

address
banked 290
banked data 289
default format 279, 281
extension,page 165
linear physical 290
logical end 246
logical start segment 253
logical start set 246
paged format 279, 281
physical 246, 290, 292
physical end 244
physical start 244
physical start segment 253
set logical 246
align directive 174
alocate memory block 179
alocate storage for constants 178
application
embedded 238
non-banked 279
system bootstrap 238
asin function 75
assembler
branch shortening 171
C styledirectives 173
code inline 47
conditional branch range 171
conditional directive 168
createlisting file 157
cross-reference 159
environment symbol 171
error for undefined symbol 158
expression 163
filling byte 157
generate
listing file 158
object file 158
include directive 171
label 161
listing process 281
macro

directive 165
endm directive 165
instruction 165
operator set 164
produce cross-reference 156
sections 169
switch directive 169
xbit directive 231
assembler log errors 157
assembly language
code optimizer 409
atan function 76
atan2 function 77
atof function 78
atoi function 79
atol function 80

B

bank
automatic segment creation 246
default mode 292
disable 243
page operator 165
Size setting 244
switched system 252

base directive 175

bias
segment parameter 253
setting 254

bit
address 170
address value 254
allocated section 171
attribute section 170
define aliases 250
number 254
segment 254

bitfield
compiler reverse option 64
filling 404
filling order 64
reverse order 404

boundary
round up 246

bsct directive 176

buffer
convert to double 78
convert to integer 79
convert to long 80

C

Cinterface
to assembly language 55
underscore character prefix 55
C library 122
floating point functions 68
integer functions 68
package 67
C source
lines merging 407
c_eewbfb machine function 323, 324,
329, 330, 331, 332, 333, 347,
348, 349, 384
c h
memory byte 49
memory location 321
c Ireg
memory byte 49, 56
memory location 321
c reg
memory byte 49
memory location 321
carry function 81
cell function 82
char
signed 404
unsigned 404
clabs utility 281
clib utillity 284
clist directive 177, 192, 194, 195, 196,
197, 198, 199, 200, 201, 202
clst utility 274
cobj utility 287
code generator

Index 3

compiler pass 406
error log file 407
code optimizer
compiler pass 409
code/data, no output 244
compilation model,sel ected 290
compiler
ANSI checking 404
assembler 9
assembler option specification 61

options 60

options request 60

parser option specification 63
predefined option selection 63
preprocessed file only 63
produce assembly file 18
produce debug information 63
programmable option 318, 319
specific options 4

specify options 61

C preprocessor and language parser 8
code generation option specification
62

temporary file path 63
type checking 64, 402
user defined preprocessor symbol 62

code generator 8

code optimization 10

code optimizer 8
combination of options 319
command line options 60
configuration file 318

configuration file specification 62

create assembler file only 63
default behavior 60

default configuration file 62
default file names 65

default operations 401

default options 60, 318

driver 4

error file path specification 61
error log file 62

error message 60

exclusive options 319

flags 6

generate error 295

generate error message 66
generate listing 66

include path definition 62
listing file 62

listing file path specification 62
name 60

object file path specification 62
optimize function call 63
optimizer option specification 63

4 Index

verbose mode 19, 63
configuration file
predefined options 63
const
@near memory space 37
qualifier 36
constant
in .text section 406
numeric 162
prefix character 163
string 162
string character 163
suffix letter 163
conversion specifications 122
convert
ELF/DWARF format 292
hex format 278
IEEEG95 format 289
cos function 83
cosh function 84
cprd utility 272
cv695 utility 289
cvdwarf utility 292

D
data
@eeprom modifier 20
@near modifier 20
@near pointer representation 57

@tiny modifier 20

automatic initialization 32

const type 36
const volatile 37

float representation 57

initalized 40
initialization 25

long integer representation 57
plain pointer representation 57
short int representation 57

volatile type 36
data object
automatic 272
scope 270
type 270
dc directive 178
dcb directive 179
debug information
add line 158
adding 405
no prefix 158
debug symbol
build table 259
in object file 158
table 270
debugging
data 270
support tools 269
debugging information
data object 270
extract 272
generate 270, 405
line number 270
print file 272
print function 272
default
bitfield order 404

branch optimization 156
default base for numerical constants 175

default placement
.bit segment 254
.bsct segment 254

.bss segment 254
.data segment 254
.text segment 254
definition 259
DEFs 259
descriptor
host to 245

direct addressing mode 51

div function 85
dlist directive 180
dsdirective 181

E

eeperafunction 86
eeprom

erase full space 86

location 12, 42
ELF/DWARF

format converter 10

else directive 182, 183, 186, 192, 194,

200
end directive 184
end5 directive 188
endc directive 194, 200

endif directive 182, 185, 186, 192
endm directive 187, 207, 210, 222

endr 218, 219
enum

size optimization 404

equ directive 189, 226
error
file name 66
log file 243
message list 295

multiply defined symbol 161, 263

undefined symbol 259

error message 191
even directive 190
executable image 278
exit 87

exp function 88
expression

Index 5

evaluation 165
high 165
low 165
page 165
external memory 70
init variables 25, 32

F
fabs function 89
fail directive 191
file length restriction 270
filling byte 174, 181, 190, 215
float
single precision library 255
floating point library 67
Floating Point Library Functions 68
floor function 90
fmod function 91
format
ELF/DWARF 292
IEEE695 289
linker input/output 238
format specifiers 122
formatted argument 132
formatted arguments 122
formatted string 122
frexp function 92
function

enforce prototype declaration 404

in separate section 64

optimize call 24

prototype declaration 404

recursive 265

reentrancy 49

suppress 407

suppress unused 64
function arguments 272
function call

+jmp option 51
Function Call Optimization 51
Functions Implemented as Macros 68
Functions returning int 70

6 Index

G

generate
.bit section 55
.bsct section 55
.bss section 55
.const section 55
.data section 55
.text section 55
.ubsct section 55
hex record 245
getchar function 93
gets function 94
group
option 240

H
header files 69
-help option 6

I
|IEEE
Floating Point Standard 57
|EEE695
format converter 10
if
directive 168
if directive 182, 186, 192
if directive 185
ifc directive 193
ifdef directive 194
ifeq directive 195
ifge directive 196
ifgt directive 197
ifle directive 198
iflt directive 199
ifnc directive 202
ifndef directive 200
ifnedirective 201
imask function 95
include
file 248
file before 403

module 255
object file 248
path specification 403
specify path 403
include directive 171, 203
initialization
automatic 257
define option 245
descriptor 257
descriptor address 258
descriptor format 257
first segment 257
initialized segments 257
marker 245
startup routine 258
initialize storage for constants 178
inline
assembly code 46, 47
block inside afunction 46
block outside afunction 46
function 53
@usea modifier 54
@usex modifier 54
carry 53
imask 54
irq 53
header function 70
with _asm function 47, 48
with pragma sequences 46
integer
library 255
interface information dump 289
internal memory 70
interrupt
function in map 265
handler 49
handler address 50
hardware 49
marked section 244
reset 31
software 49
vectors 50

irg function 96
isalnum function 97
isalphafunction 98
iscntrl function 99
isdigit function 100
isgraph function 101
islower function 102
isprint function 103
ispunct function 104
isspace function 105
isupper function 106
isxdigit function 107

J
jump
table file 409
jump table 51
Ct6805 utility 24, 51
file name 52
generation 66
jmptab.s 52
jmptab.sfile 24
jump instruction 10, 51, 411
label replacement 10
number of functions 411
R prefix 53
scan listing file 10
scanned files 411
sixteen most used fonction 411

L
label
temporary,local directive 162
labs function 108
Idexp function 109
Idiv function 110
librariy
building and maintaining 284
library
build and maintain 10
create 284
deletefile 284

Index 7

extract file 285

file 255

floating point 67
integer 67, 255

list file 285

load all files 284
load modules 241
machine 67

path specification 243
replace file 285
scanned 241

single precision 255
Standard ANSI 255
version 255

line number

link

information 406

command file 242
user command file 21

linker

character prefix,comment 241
build freestanding program 238
clnk 9

command file 240

command file example 266
command item 240

comment 241

global command line options 243
output file 239

physical memory 239

list directive 205
listing

lit di
local

local

absolute information 159

cross reference 19

filelocation 28

file path specification 281
interspersed C and assembly file 18
stream 159

rective 204

|abels 49
directive 206

8 Index

locate sourcefile 274
log function 111

1og10 function 112
long multiplication 362

M

macro
argument 166
internal labels 161
named syntax 167
named syntax, example 208
numbered syntax 166
numbered syntax,example 208
parameter 166
special parameter \# 166
specia parameter * 167, 207
specia parameter \O 167, 208

macro directive 207

main
function 265

main() routine 32

map
file description 265
modules section 265
produce information 243
segment section 265
stack usage section 265
symbols section 265

max function 113

MC68HCO05
input/output 38

memchr function 114

memcmp function 115

memcpy function 116

memmove function 117

memory
+nsh compiler option 45
external ,@near modifier 41
location 38
mapped 1/0 38
share area 407
shared 45

shared area 64
memory model 265
memset function 118
messg directive 209
mexit directive 208, 210
min function 119
mlist directive 211
modf function 120
Motorola
assembler syntax 160
old syntax 157
old syntax support 172
S-Records format 279
standard behaviour 172
standard S-record,generating 22

N

named syntax, example 219
new

segment control 240

start region 249
nolist directive 212
nopage directive 213
numbered syntax, example 219

@]
object
filelocation 28
image 237
module 238
module inspector 10
relocatable 287
relocatable file output 158
relocatablefile size 287
size 287
offset
segment parameter 253
setting 254
offset directive 214
optimization
disable selectively 410
keep line 410

specific code 409
optimizer

disable 62
option

global 242
org directive 215
output 122

default format 279

file name 242

listing line number 403
output formats 122
output to buffer 132
override

data bias 278

text bias 278

P
page

value 165, 279
page directive 216
page header 230
paginating output 275
parser

behaviour 403

compiler pass 402

error log file 403
plen directive 217
pointer

narrow 404
pow function 121
prefix

filename 405
prefix character 162
preprocessor

#define 402

#include 402

run only 403
printf function 122
private name region

use 260
putchar function 127
puts function 128

Index 9

R square brackets, uninitialized data 44

rand function 129 user defined 43
range specification 275 section directive 224
redirect output 275 sections
REFs 259 default 43
region predefined 43
name 240 relocation 252
private 249 segment
public 249 bsct start address 247
use of private name 260 bss start address 247
register build new 255
input/output 40 control options 242, 244
relative address 270 data start address 247
repeat directive 218 definition 237
repeat| directive 219 fill 244
restore directive 221 follow current 244
rexit directive 218, 219, 222 maximum size 245
ROM 38 name 245

overlap checking 246, 253

small area 51 .
runtime startup overlapping 255

modifying 31 overlapping control 246

round up address 246

S section overlap 247
Sformat character 70 shared data 245
save directive 223 space name 253
section start,new 244

.bit 20 text start address 247

.bsct 20 zero size 241

bss 20 segmented architecture 253

.const 20 separated address space 253

' set directive 226

.data 20

eeprom 20 shared data 258

.text 20 sin function 130

:ubsct 20 sinh function 131

curly bracesinitialized data 44 source fileslisting 274

definition 237 source listings 274

name 44, 169 Space .

parenthesis,code 44 for function 403

pragma definition 43 spacéorll’a\llnag able 403

ragmadirective 44
e definition 246

predefinition 169

single 407 spc directive 227

10 Index

specify 122
sprintf function 132
sgrt function 133
srand function 134
stack

amount of memory 265

model in map 265

need 265
stack pointer

reset 32
standard ANS! libraries 255
startup file

crstx.s 32

crts.h05 31

crtsi.h05 31

crtsi.s 32

crtsx.h05 31
static data 272
stop execution of program 87
strcat function 135
strchr function 136
stremp function 137
strepy function 138
strespn function 139
stream output 68
strlen function 140
strncat function 141
strncmp function 142
strnepy function 143
strpbrk function 144
strrchr function 145
strspn function 146
strstr function 147
strtod function 148
strtol function 149
strtoul function 150
suffix

assembly file 60

Cfile 60

input 282

output 282
suppress pagination 275

switch directive 228
symbol
alias 260
define 240
define alias 250
define new 250
definition 250
export 264
logical end value,equal 251
logical start value,equal 251
physical end value,equal 251
physical start value,equal 251
sizevalueequa 251
sort alphabetically 243
sort by address 243
user-defined 403
symbol table
add 251
information 287
new 259

T
tab character setting 229

tabs directive 229

tan function 151

tanh function 152

task entries 265

title directive 230

tolower function 153

toupper function 154

trandate executable images 278

U

unreachable code
eiminate 11

\%

variable
local 45

volatile
keyword using 36
qualifier 36

Index 11

W

window
set shift 243
size 246

X
xbit

assembler directive 170
xbit.b

assembler directive 170
xdef directive 232, 233
xref directive 231, 232, 233

Z

Zero page
.bsct section 41
.ubsct section 41
@tiny modifier 41
section 41
size 41

zero page section 176

12 Index

	Preface
	Organization of this Manual

	Introduction
	Introduction
	Document Conventions
	Typewriter font
	Italics
	[Brackets]
	Conventions
	Command Line
	Flags

	Compiler Architecture
	Predefined Symbol
	Linking
	Programming Support Utilities
	Listings
	Optimizations
	Support for ROMable Code
	Support for eeprom

	Tutorial Introduction
	Acia.c, Example file
	Default Compiler Operation

	Compiling and Linking
	Step 1: Compiling
	Step 2: Assembler
	Step 3: Linking
	Step 4: Generating S-Records file

	Linking Your Application
	Optimize Function Call
	Generating Automatic Data Initialization
	Specifying Command Line Options

	Programming Environments
	Introduction
	Modifying the Runtime Startup
	Description of Runtime Startup Code

	Initializing data in RAM
	Bit Variables
	The const and volatile Type Qualifiers
	Performing Input/Output in C
	Referencing Absolute Addresses
	Accessing Internal Registers
	Placing Data Objects in The Bss Section
	Placing Data Objects in Internal Memory
	Setting Zero Page Size

	Placing Data Objects in External Memory
	Placing Data Objects in the EEPROM Space
	Redefining Sections
	Local Variables and Arguments
	Inserting Inline Assembly Instructions
	Inlining with pragmas
	Inlining with _asm
	Inlining Labels

	Writing Interrupt Handlers
	Placing Addresses in Interrupt Vectors
	Function Call Optimization
	Inline Function
	Interfacing C to Assembly Language
	Register Usage
	Data Representation

	Using The Compiler
	Invoking the Compiler
	Compiler Command Line Options

	File Naming Conventions
	Generating Listings
	Generating an Error File
	Generating Jump Table
	Return Status
	Examples
	C Library Support
	How C Library Functions are Packaged
	Inserting Assembler Code Directly
	Linking Libraries with Your Program
	Integer Library Functions
	Common Input/Output Functions
	Functions Implemented as Macros
	Including Header Files

	Usage of External Memory Pointers
	Descriptions of C Library Functions
	Generate inline assembly code
	Abort program execution
	Find absolute value
	Arccosine
	Arcsine
	Arctangent
	Arctangent of y/x
	Convert buffer to double
	Convert buffer to integer
	Convert buffer to long
	Test or get the carry bit
	Round to next higher integer
	Cosine
	Hyperbolic cosine
	Divide with quotient and remainder
	Erase the full eeprom space
	Exit program execution
	Exponential
	Find double absolute value
	Round to next lower integer
	Find double modulus
	Extract fraction from exponent part
	Get character from input stream
	Get a text line from input stream
	Test the interrupt mask bit
	Test the interrupt line level
	Test for alphabetic or numeric character
	Test for alphabetic character
	Test for control character
	Test for digit
	Test for graphic character
	Test for lowercase character
	Test for printing character
	Test for punctuation character
	Test for whitespace character
	Test for uppercase character
	Test for hexadecimal digit
	Find long absolute value
	Scale double exponent
	Long divide with quotient and remainder
	Natural logarithm
	Common logarithm
	Test for maximum
	Scan buffer for character
	Compare two buffers for lexical order
	Copy one buffer to another
	Copy one buffer to another
	Propagate fill character throughout buffer
	Test for minimum
	Extract fraction and integer from double
	Raise x to the y power
	Output formatted arguments to stdout
	Put a character to output stream
	Put a text line to output stream
	Generate pseudo-random number
	Sin
	Hyperbolic sine
	Output arguments formatted to buffer
	Real square root
	Seed pseudo-random number generator
	Concatenate strings
	Scan string for first occurrence of character
	Compare two strings for lexical order
	Copy one string to another
	Find the end of a span of characters in a set
	Find length of a string
	Concatenate strings of length n
	Compare two n length strings for lexical order
	Copy n length string
	Find occurrence in string of character in set
	Scan string for last occurrence of character
	Find the end of a span of characters not in set
	Scan string for first occurrence of string
	Convert buffer to double
	Convert buffer to long
	Convert buffer to unsigned long
	Tangent
	Hyperbolic tangent
	Convert character to lowercase if necessary
	Convert character to uppercase if necessary

	Using The Assembler
	Invoking ca6805
	Object File
	Listings
	Assembly Language Syntax
	Instructions
	Labels
	Temporary Labels
	Constants
	Expressions
	Macro Instructions
	Conditional Directives
	Sections
	Bit Handling
	Includes

	Branch Optimization
	Old Syntax
	C Style Directives
	Assembler Directives
	Align the next instruction on a given boundary
	Define the default base for numerical constants
	Switch to the predefined .bsct section.
	Turn listing of conditionally excluded code on or off.
	Allocate constant(s)
	Allocate constant block
	Turn listing of debug directives on or off.
	Allocate variable(s)
	Conditional assembly
	Conditional assembly
	Stop the assembly
	End conditional assembly
	End conditional assembly
	End macro definition
	End repeat section
	Give a permanent value to a symbol
	Assemble next byte at the next even address relative to the start of a section.
	Generate error message.
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Conditional assembly
	Include text from another text file
	Give a text equivalent to a symbol
	Turn on listing during assembly.
	Create a new local block
	Define a macro
	Send a message out to STDOUT
	Terminate a macro definition
	Turn on or off listing of macro expansion.
	Turn off listing.
	Disable pagination in the listing file
	Creates absolute symbols
	Sets the location counter to an offset from the beginning of a section.
	Start a new page in the listing file
	Specify the number of lines per pages in the listing file
	Repeat a list of lines a number of times
	Repeat a list of lines a number of times
	Restore saved section
	Terminate a repeat definition
	Save section
	Define a new section
	Give a resetable value to a symbol
	Insert a number of blank lines before the next statement in the listing file.
	Place code into a section.
	Specify the number of spaces for a tab character in the listing file
	Define default header
	Declare bit symbol as being defined elsewhere
	Declare a variable to be visible
	Declare symbol as being defined elsewhere

	Using The Linker
	Introduction
	Overview
	Linker Command File Processing
	Inserting comments in Linker commands

	Linker Options
	Global Command Line Options
	Segment Control Options
	Segment Grouping
	Linking Files on the Command line
	Example
	Include Option
	Example
	Private Region Options
	Symbol Definition Option
	Reserve Space Option

	Section Relocation
	Address Arithmetic
	Overlapping Control

	Setting Bias and Offset
	Setting the Bias
	Setting the Offset
	Using Default Placement
	Bit Segment Handling

	Linking Objects
	Linking Library Objects
	Library Order

	Automatic Data Initialization
	Descriptor Format

	Shared Data Handling
	DEFs and REFs
	Special Topics
	Private Name Regions
	Renaming Symbols
	Absolute Symbol Tables

	Description of The Map File
	Return Value
	Linker Command Line Examples

	Debugging Support
	Generating Debugging Information
	Generating Line Number Information
	Generating Data Object Information

	The cprd Utility
	Command Line Options
	Examples

	The clst utility
	Command Line Options

	Programming Support
	The chex Utility
	Command Line Options
	Return Status
	Examples

	The clabs Utility
	Command Line Options
	Return Status
	Examples

	The clib Utility
	Command Line Options
	Return Status
	Examples

	The cobj Utility
	Command Line Options
	Return Status
	Examples

	The cv695 Utility
	Command Line Options
	Return Status
	Examples

	The cvdwarf Utility
	Command Line Options
	Return Status
	Examples

	Compiler Error Messages
	Parser (cp6805) Error Messages
	Code Generator (cg6805) Error Messages
	Assembler (ca6805) Error Messages
	Linker (clnk) Error Messages

	Modifying Compiler Operation
	The Configuration File
	Changing the Default Options
	Creating Your Own Options

	Example

	MC68HC05 Machine Library
	Update a char bitfield in extended memory
	Update an int bitfield in extended memory
	Call an indirect function
	Call an indirect function
	Quotient of unsigned integer division
	Copy a structure into another
	Eeprom bit field update
	Write a char int in eeprom
	Write a long int in eeprom
	Write a short int in eeprom
	Move a structure in eeprom
	Add float to float
	Compare floats
	Divide float by float
	Add float to float in memory
	Multiply float by float in memory
	Subtract float from float in memory
	Multiply float by float
	Negate a float
	Subtract float from float
	Convert float to integer
	Convert float into long integer
	Convert float to integer
	Compare a float in memory to zero
	Load a byte from extended memory
	Load a long integer from extended memory
	Load a word from extended memory
	Quotient of integer division
	Integer multiplication
	Convert integer into float
	Convert integer into long
	Perform C switch statement on long
	Long integer addition
	Bitwise AND for long integers
	Long integer compare
	Quotient of long integer division
	Long addition
	Long bitwise AND
	Long shift left
	Long multiplication in memory
	Negate a long integer in memory
	Long bitwise OR
	Signed long shift right
	Long subtraction
	Unsigned long shift right
	Long bitwise exclusive OR
	Long integer shift left
	Remainder of long integer division
	Multiply long integer by long integer
	Negate a long integer
	Bitwise OR with long integers
	Long integer right shift
	Long test against zero
	Long integer subtraction
	Convert long integer into float
	Load memory into long register
	Quotient of unsigned long integer division
	Remainder of unsigned long integer division
	Unsigned long integer shift right
	Bitwise exclusive OR with long integers
	Compare a long integer to zero
	Store a byte in extended memory
	Store a long integer in extended memory
	Store a word in extended memory
	Store long register in memory
	Quotient of signed integer division
	Multiply long integer by unsigned byte
	Copy a structure into another
	Quotient of unsigned integer division
	Convert unsigned integer into float
	Convert unsigned integer into long
	Convert unsigned long integer into float
	Convert unsigned integer into float
	Convert unsigned integer into long
	Copy a structure into another
	Convert integer into float
	Convert integer into long

	Compiler Passes
	The cp6805 Parser
	Command Line Options
	Return Status
	Example

	The cg6805 Code Generator
	Command Line Options
	Return Status
	Example

	The co6805 Assembly Language Optimizer
	Command Line Options
	Disabling Optimization
	Return Status
	Example

	The ct6805 Utility
	Command Line Options
	Return Status
	Example
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

